skip to main content

Title: Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE
Authors:
; ; ; ; ; ;
Award ID(s):
1203704 1743738
Publication Date:
NSF-PAR ID:
10092219
Journal Name:
Climate Dynamics
ISSN:
0930-7575
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Investigating Pacific Meridional Modes (PMM) without the influence of tropical Pacific variability is technically difficult if based on observations or fully coupled model simulations due to their overlapping spatial structures. To confront this issue, the present study investigates both North (NPMM) and South PMM (SPMM) in terms of their associated atmospheric forcing and response processes based on a mechanically decoupled climate model simulation. In this experiment, the climatological wind stress is prescribed over the tropical Pacific, which effectively removes dynamically coupled tropical Pacific variability (e.g., the El Niño-Southern Oscillation). Interannual NPMM in this experiment is forced not only bymore »the North Pacific Oscillation, but also by a North Pacific tripole (NPT) pattern of atmospheric internal variability, which primarily forces decadal NPMM variability. Interannual and decadal variability of the SPMM is partly forced by the South Pacific Oscillation. In turn, both interannual and decadal NPMM variability can excite atmospheric teleconnections over the Northern Hemisphere extratropics by influencing the meridional displacement of the climatological intertropical convergence zone throughout the whole year. Similarly, both interannual and decadal SPMM variability can also excite atmospheric teleconnections over the Southern Hemisphere extratropics by extending/shrinking the climatological South Pacific convergence zone in all seasons. Our results highlight a new poleward pathway by which both the NPMM and SPMM feed back to the extratropical climate, in addition to the equatorward influence on tropical Pacific variability.« less