skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pacific Meridional Modes without Equatorial Pacific Influence
Abstract Investigating Pacific Meridional Modes (PMM) without the influence of tropical Pacific variability is technically difficult if based on observations or fully coupled model simulations due to their overlapping spatial structures. To confront this issue, the present study investigates both North (NPMM) and South PMM (SPMM) in terms of their associated atmospheric forcing and response processes based on a mechanically decoupled climate model simulation. In this experiment, the climatological wind stress is prescribed over the tropical Pacific, which effectively removes dynamically coupled tropical Pacific variability (e.g., the El Niño-Southern Oscillation). Interannual NPMM in this experiment is forced not only by the North Pacific Oscillation, but also by a North Pacific tripole (NPT) pattern of atmospheric internal variability, which primarily forces decadal NPMM variability. Interannual and decadal variability of the SPMM is partly forced by the South Pacific Oscillation. In turn, both interannual and decadal NPMM variability can excite atmospheric teleconnections over the Northern Hemisphere extratropics by influencing the meridional displacement of the climatological intertropical convergence zone throughout the whole year. Similarly, both interannual and decadal SPMM variability can also excite atmospheric teleconnections over the Southern Hemisphere extratropics by extending/shrinking the climatological South Pacific convergence zone in all seasons. Our results highlight a new poleward pathway by which both the NPMM and SPMM feed back to the extratropical climate, in addition to the equatorward influence on tropical Pacific variability.  more » « less
Award ID(s):
2022868 1637450
PAR ID:
10286122
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Climate
ISSN:
0894-8755
Page Range / eLocation ID:
1 to 51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract North and South Pacific Meridional Modes (NPMM and SPMM) are known precursors of El Niño–Southern Oscillation (ENSO) and Tropical Pacific decadal variability (TPDV). However, the relative importance of these precursors and the timescale on which they impact the tropics remain unclear. Using a 30‐member ensemble of the Community Earth System Model as the control climate, we generate two additional members where the NPMM and SPMM are selectively suppressed. We find that both meridional modes energize the tropical variance independently on different timescales. The absence of NPMM leads to a significant reduction of the tropical interannual variability (~35%), while the absence of the SPMM has no appreciable impact on ENSO but significantly reduces the TPDV (~30%). While the relative importance of the NPMM and SPMM may be model dependent, the stochastic atmospheric variability in the extratropics that energizes the meridional modes emerges as a key source of TPDV. 
    more » « less
  2. Abstract Quasi-decadal climate of the Kuroshio Extension (KE) is pivotal to understanding the North Pacific coupled ocean–atmosphere dynamics and their predictability. Recent observational studies suggest that extratropical-tropical coupling between the KE and the central tropical Pacific El Niño Southern Oscillation (CP-ENSO) leads to the observed preferred decadal time-scale of Pacific climate variability. By combining reanalysis data with numerical simulations from a high-resolution climate model and a linear inverse model (LIM), we confirm that KE and CP-ENSO dynamics are linked through extratropical-tropical teleconnections. Specifically, the atmospheric response to the KE excites Meridional Modes that energize the CP-ENSO (extratropicstropics), and in turn, CP-ENSO teleconnections energize the extratropical atmospheric forcing of the KE (tropicsextratropics). However, both observations and the model show that the KE/CP-ENSO coupling is non-stationary and has intensified in recent decades after the mid-1980. Given the short length of the observational and climate model record, it is difficult to attribute this shift to anthropogenic forcing. However, using a large-ensemble of the LIM we show that the intensification in the KE/CP-ENSO coupling after the mid-1980 is significant and linked to changes in the KE atmospheric downstream response, which exhibit a stronger imprint on the subtropical winds that excite the Pacific Meridional modes and CP-ENSO. 
    more » « less
  3. Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components. 
    more » « less
  4. The modes of Pacific decadal-scale variability (PDV), traditionally defined as statistical patterns of variance, reflect to first order the ocean's integration (i.e., reddening) of atmospheric forcing that arises from both a shift and a change in strength of the climatological (time-mean) atmospheric circulation. While these patterns concisely describe PDV, they do not distinguish among the key dynamical processes driving the evolution of PDV anomalies, including atmospheric and ocean teleconnections and coupled feedbacks with similar spatial structures that operate on different timescales. In this review, we synthesize past analysis using an empirical dynamical model constructed from monthly ocean surface anomalies drawn from several reanalysis products, showing that the PDV modes of variance result from two fundamental low-frequency dynamical eigenmodes: the North Pacific–central Pacific (NP-CP) and Kuroshio–Oyashio Extension (KOE) modes. Both eigenmodes highlight how two-way tropical–extratropical teleconnection dynamics are the primary mechanisms energizing and synchronizing the basin-scale footprint of PDV. While the NP-CP mode captures interannual- to decadal-scale variability, the KOE mode is linked to the basin-scale expression of PDV on decadal to multidecadal timescales, including contributions from the South Pacific. 
    more » « less
  5. Abstract The Pacific Meridional Mode (PMM) has long been associated with extra‐tropical air‐sea coupling processes, which are thought to influence the development of El Niño‐Southern Oscillation (ENSO). Here we show that the PMM on seasonal to interannual timescales is closely associated with a newly proposed tropical mode known as the ENSO Combination mode (C‐mode), which arises from the nonlinear interaction between ENSO and the background annual cycle in the deep tropics. The PMM exhibits a remarkable resemblance with the C‐mode in atmospheric patterns, spectral characteristics, and local impacts. Based on a simple Hasselmann‐type model, we further demonstrate that the C‐mode‐related atmospheric anomalies can effectively drive PMM‐like sea surface temperature anomalies. As the C‐mode captures seasonally modulated ENSO characteristics, the seasonal‐to‐interannual PMM variability could naturally establish a connection with ENSO, thereby offering an alternative explanation for the observed relationship between PMM and ENSO. 
    more » « less