Abstract The physical mechanisms whereby the mean and transient circulation anomalies associated with the North Atlantic Oscillation (NAO) drive winter mean precipitation anomalies across the North Atlantic Ocean, Europe, and the Mediterranean Sea region are investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis. A moisture budget decomposition is used to identify the contribution of the anomalies in evaporation, the mean flow, storm tracks and the role of moisture convergence and advection. Over the eastern North Atlantic, Europe, and the Mediterranean, precipitation anomalies are primarily driven by the mean flow anomalies with, for a positive NAO, anomalous moist advection causing enhanced precipitation in the northern British Isles and Scandinavia and anomalous mean flow moisture divergence causing drying over continental Europe and the Mediterranean region. Transient eddy moisture fluxes work primarily to oppose the anomalies in precipitation minus evaporation generated by the mean flow, but shifts in storm-track location and intensity help to explain regional details of the precipitation anomaly pattern. The extreme seasonal precipitation anomalies that occurred during the two winters with the most positive (1988/89) and negative (2009/10) NAO indices are also explained by NAO-associated mean flow moisture convergence anomalies.
more »
« less
Emerging European winter precipitation pattern linked to atmospheric circulation changes over the North Atlantic region in recent decades: EMERGING EUROPEAN WINTER PRECIPITATION PATTERN
- Award ID(s):
- 1355339
- PAR ID:
- 10092232
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 44
- Issue:
- 16
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- 8557 to 8566
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Winter precipitation forecasts of phase and amount are challenging, especially in Northeast United States where mixed precipitation events from various synoptic systems frequently occur. Yet, there are not enough quality observations of winter precipitation, particularly microphysical properties from falling snow or mixed phase precipitation. During the winters of 2021–2022, 2022–2023, and 2023–2024, the NASA Global Precipitation Measurement (GPM) Ground Validation (GV) program conducted a field campaign at the University of Connecticut (UConn). The goal of this campaign was to observe various phases of winter precipitation and winter storm types to validate the GPM satellite precipitation products. Over the three winters at UConn, a total of 40 instruments were deployed across two observing sites that captured 117 precipitation events, including 19 phase transition events as indicated by the PARSIVEL2. These instruments included scanning and vertically pointing radars, along with suites of in-situ sensors. In addition, an unmanned aircraft system has been deployed in 2023–2024. Here, an overview of the different field deployments, instrumentation, and the datasets collected are presented. To showcase the observations, this article features a wide-ranging set of measurements collected from the instrument suite for the 28 February 2023 storm, during which six to eight inches of snow accumulated at the two different observing sites. Also included is a discussion on how these observations can be combined with other datasets to validate ground-based and remote sensing measurements and highlight important atmospheric processes that impact winter precipitation phase and amount. The datasets collected from this GPM GV field campaign are available at https://doi.org/10.5067/GPMGVUCONN/DATA101 (Cerrai et al., 2025).more » « less
An official website of the United States government

