skip to main content

Title: EAGER: Student Support in STEM: Developing and Validating a Survey Instrument for Assessing the Magnitude of Institutional Support Provided to Undergraduate Students at a College Level
Student-retention theories traditionally focus on institutional retention, even though efforts to support students in science, technology, engineering, and mathematics (STEM) occur at the college level. This study bridges this gap between research and practice by extending and empirically testing the Model of Co-Curricular Support (MCCS), which specifically focuses on supporting and retaining underrepresented groups in STEM. The MCCS is a student-retention model that demonstrates the breadth of assistance currently used to support undergraduate students in STEM, particularly those from underrepresented groups. The aim of this exploratory research is to develop and validate a survey instrument grounded in the MCCS that can be used by college administrators and student-support practitioners to assess the magnitude of institutional support received by undergraduate students in STEM. To date, such an instrument does not exist. Our poster will present a summary of the instrument development process that has occurred to date. We are developing the survey following best practices outlined in the literature. We are clearly defining the construct of interest and target population; reviewing related tests; developing the prototype of the survey instrument; evaluating the prototype for face and content validity from students and experts; revising and testing based on suggestion; and collecting data to more » determine test validity and reliability across four institutional contexts. Our institutional sample sites were purposefully selected because of their large size and diversity with respect to undergraduates in STEM. The results from our study will help prioritize the elements of institutional support that should appear somewhere in a college’s suite of support efforts. Our study will provide scientific evidence that STEM researchers, educators, administrators, and policy makers need to make informed decisions to improve STEM learning environments and design effective programs, activities, and services. « less
Authors:
; ; ; ;
Award ID(s):
1704350
Publication Date:
NSF-PAR ID:
10092334
Journal Name:
ASEE annual conference & exposition
ISSN:
2153-5965
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of this work-in-progress paper is to share insights from current efforts to develop and test the validity of an instrument to measure undergraduate students’ perceived support in science, technology, engineering, and mathematics (STEM). The development and refinement of our survey instrument ultimately functions to extend, operationalize, and empirically test the Model of Co-curricular Support (MCCS). The MCCS is a conceptual framework of student support that demonstrates the breadth of assistance currently used to support undergraduate students in STEM, particularly those from underrepresented groups. We are currently gathering validity evidence for an instrument that evaluates the extent to whichmore »colleges of engineering and science offer supportive environments. To date, exploratory factor analysis and correlation for construct validity have helped us develop 14 constructs for student support in STEM. Future work will focus on modeling relationships between these constructs and student outcomes, providing the explanatory power needed to explain empirically how co-curricular supports contribute to different forms of student success in STEM. We hope that operationalizing the MCCS through this survey will shift how we conceptualize and offer student support, enabling college administrators and student support practitioners to evaluate their portfolio of student support efforts.« less
  2. The purpose of the project is to identify how to measure various types of institutional support as it pertains to underrepresented and underserved populations in colleges of engineering and science. We are grounding this investigation in the Model of Co-Curricular Support, a conceptual framework that emphasizes the breadth of assistance currently used to support undergraduate students in engineering and science. The results from our study will help prioritize the elements of institutional support that should appear somewhere in a college’s suite of support efforts to improve engineering and science learning environments and design effective programs, activities, and services. Our postermore »will present: 1) an overview of the instrument development process; 2) evaluation of the prototype for face and content validity from students and experts; and 3) instrument revision and data collection to determine test validity and reliability across varied institutional contexts. In evaluating the initial survey, we included multiple rounds of feedback from students and experts, receiving feedback from 46 participants (38 students, 8 administrators). We intentionally sampled for representation across engineering and science colleges; gender identity; race/ethnicity; international student status; and transfer student status. The instrument was deployed for the first time in Spring 2018 to the institutional project partners at three universities. It was completed by 722 students: 598 from University 1, 51 from University 2, and 123 from University 3. We tested the construct validity of these responses using a minimum residuals exploratory factor analysis and correlation. A preliminary data analysis shows evidence of differences in perception on types of support college of engineering and college of science students experience. The findings of this preliminary analysis were used to revise the instrument further prior to the next round of testing. Our target sample for the next instrument deployment is 2,000 students, so we will survey ~13,000 students based on a 15% anticipated response rate. Following data collection, we will use confirmatory factor analysis to continue establishing construct validity and report on the stability of constructs emerging from our piloting on a new student sample(s). We will also investigate differences across these constructs by subpopulations of students.« less
  3. This work-in-progress paper presents emerging results from a research study aiming to develop and gather validity evidence for an instrument that can be used by college administrators and student-support practitioners to assess the magnitude of undergraduate students’ perceived institutional support received in science, technology, engineering, and mathematics (STEM). Our goal is to provide stakeholders with a validated tool to diagnose areas of strength and opportunities to better support students, particularly those from underserved populations. Over the past year, we have engaged in a systematic process of instrument development. We began by developing a prototype based on the newly developed Modelmore »of Co-Curricular Support (MCCS). We refined it by reviewing existing literature and instruments germane to student support, and soliciting stakeholder feedback. During the spring of 2018, we distributed the instrument to STEM undergraduate students at three U.S. institutions. In this paper, we report our process of instrument development and preliminary results. These results will inform the next revision of our instrument, ultimately providing the STEM education community with novel and theory-based ways to measure students’ perceptions of support in STEM.« less
  4. This work-in-progress research paper stems from a larger project where we are developing and gathering validity evidence for an instrument to measure undergraduate students' perceptions of support in science, technology, engineering, and mathematics (STEM). The refinement of our instrument functions to extend, operationalize, and empirically test the model of co-curricular support (MCCS). The MCCS is a conceptual framework of student support that explains how a student's interactions with the professional, academic and social systems within a college could influence their success more broadly in an undergraduate STEM degree program. Our goal is to create an instrument that functions diagnostically tomore »help colleges effectively allocate resources for the various financial, physical, and human capital support provided to undergraduate students in STEM. While testing the validity of our newly developed instrument, an analysis of the data revealed differences in perceived support among College of Engineering (COE) and College of Science (COS) students. In this work-in-progress paper, we examine these differences at one institution using descriptive statistics and Welch's t-tests to identify trends and patterns of support among different student groups.« less
  5. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparationmore »and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce.« less