skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Residual Unfairness in Fair Machine Learning from Prejudiced Data
Recent work in fairness in machine learning has proposed adjusting for fairness by equalizing accuracy metrics across groups and has also studied how datasets affected by historical prejudices may lead to unfair decision policies. We connect these lines of work and study the residual unfairness that arises when a fairness-adjusted predictor is not actually fair on the target population due to systematic censoring of training data by existing biased policies. This scenario is particularly common in the same applications where fairness is a concern. We characterize theoretically the impact of such censoring on standard fairness metrics for binary classifiers and provide criteria for when residual unfairness may or may not appear. We prove that, under certain conditions, fairness-adjusted classifiers will in fact induce residual unfairness that perpetuates the same injustices, against the same groups, that biased the data to begin with, thus showing that even state-of-the-art fair machine learning can have a "bias in, bias out" property. When certain benchmark data is available, we show how sample reweighting can estimate and adjust fairness metrics while accounting for censoring. We use this to study the case of Stop, Question, and Frisk (SQF) and demonstrate that attempting to adjust for fairness perpetuates the same injustices that the policy is infamous for.  more » « less
Award ID(s):
1656996
PAR ID:
10092360
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 35th International Conference on Machine Learning
Page Range / eLocation ID:
2439-2448
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As machine learning (ML) algorithms are increasingly used in high-stakes applications, concerns have arisen that they may be biased against certain social groups. Although many approaches have been proposed to make ML models fair, they typically rely on the assumption that data distributions in training and deployment are identical. Unfortunately, this is commonly violated in practice and a model that is fair during training may lead to an unexpected outcome during its deployment. Although the problem of designing robust ML models under dataset shifts has been widely studied, most existing works focus only on the transfer of accuracy. In this paper, we study the transfer of both fairness and accuracy under domain generalization where the data at test time may be sampled from never-before-seen domains. We first develop theoretical bounds on the unfairness and expected loss at deployment, and then derive sufficient conditions under which fairness and accuracy can be perfectly transferred via invariant representation learning. Guided by this, we design a learning algorithm such that fair ML models learned with training data still have high fairness and accuracy when deployment environments change. Experiments on real-world data validate the proposed algorithm. 
    more » « less
  2. Although machine learning (ML) algorithms are widely used to make decisions about individuals in various domains, concerns have arisen that (1) these algorithms are vulnerable to strategic manipulation and "gaming the algorithm"; and (2) ML decisions may exhibit bias against certain social groups. Existing works have largely examined these as two separate issues, e.g., by focusing on building ML algorithms robust to strategic manipulation, or on training a fair ML algorithm. In this study, we set out to understand the impact they each have on the other, and examine how to characterize fair policies in the presence of strategic behavior. The strategic interaction between a decision maker and individuals (as decision takers) is modeled as a two-stage (Stackelberg) game; when designing an algorithm, the former anticipates the latter may manipulate their features in order to receive more favorable decisions. We analytically characterize the equilibrium strategies of both, and examine how the algorithms and their resulting fairness properties are affected when the decision maker is strategic (anticipates manipulation), as well as the impact of fairness interventions on equilibrium strategies. In particular, we identify conditions under which anticipation of strategic behavior may mitigate/exacerbate unfairness, and conditions under which fairness interventions can serve as (dis)incentives for strategic manipulation. 
    more » « less
  3. Although many fairness criteria have been proposed to ensure that machine learning algorithms do not exhibit or amplify our existing social biases, these algorithms are trained on datasets that can themselves be statistically biased. In this paper, we investigate the robustness of existing (demographic) fairness criteria when the algorithm is trained on biased data. We consider two forms of dataset bias: errors by prior decision makers in the labeling process, and errors in the measurement of the features of disadvantaged individuals. We analytically show that some constraints (such as Demographic Parity) can remain robust when facing certain statistical biases, while others (such as Equalized Odds) are significantly violated if trained on biased data. We provide numerical experiments based on three real-world datasets (the FICO, Adult, and German credit score datasets) supporting our analytical findings. While fairness criteria are primarily chosen under normative considerations in practice, our results show that naively applying a fairness constraint can lead to not only a loss in utility for the decision maker, but more severe unfairness when data bias exists. Thus, understanding how fairness criteria react to different forms of data bias presents a critical guideline for choosing among existing fairness criteria, or for proposing new criteria, when available datasets may be biased. 
    more » « less
  4. We consider the problem of whether a Neural Network (NN) model satisfies global individual fairness. Individual Fairness (defined in (Dwork et al. 2012)) suggests that similar individuals with respect to a certain task are to be treated similarly by the decision model. In this work, we have two main objectives. The first is to construct a verifier which checks whether the fairness property holds for a given NN in a classification task or provides a counterexample if it is violated, i.e., the model is fair if all similar individuals are classified the same, and unfair if a pair of similar individuals are classified differently. To that end, we construct a sound and complete verifier that verifies global individual fairness properties of ReLU NN classifiers using distance-based similarity metrics. The second objective of this paper is to provide a method for training provably fair NN classifiers from unfair (biased) data. We propose a fairness loss that can be used during training to enforce fair outcomes for similar individuals. We then provide provable bounds on the fairness of the resulting NN. We run experiments on commonly used fairness datasets that are publicly available and we show that global individual fairness can be improved by 96 % without a significant drop in test accuracy. 
    more » « less
  5. We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources. 
    more » « less