skip to main content

Title: Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved
Assessing the fairness of a decision making system with respect to a protected class, such as gender or race, is challenging when class membership labels are unavailable. Probabilistic models for predicting the protected class based on observable proxies, such as surname and geolocation for race, are sometimes used to impute these missing labels for compliance assessments. Empirically, these methods are observed to exaggerate disparities, but the reason why is unknown. In this paper, we decompose the biases in estimating outcome disparity via threshold-based imputation into multiple interpretable bias sources, allowing us to explain when over- or underestimation occurs. We also propose an alternative weighted estimator that uses soft classification, and show that its bias arises simply from the conditional covariance of the outcome with the true class membership. Finally, we illustrate our results with numerical simulations and a public dataset of mortgage applications, using geolocation as a proxy for race. We confirm that the bias of threshold-based imputation is generally upward, but its magnitude varies strongly with the threshold chosen. Our new weighted estimator tends to have a negative bias that is much simpler to analyze and reason about.
Authors:
; ; ; ;
Award ID(s):
1656996
Publication Date:
NSF-PAR ID:
10092365
Journal Name:
Proceedings of the Conference on Fairness, Accountability, and Transparency
Page Range or eLocation-ID:
339-348
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasing impact of algorithmic decisions on people’s lives compels us to scrutinize their fairness and, in particular, the disparate impacts that ostensibly color-blind algorithms can have on different groups. Examples include credit decisioning, hiring, advertising, criminal justice, personalized medicine, and targeted policy making, where in some cases legislative or regulatory frameworks for fairness exist and define specific protected classes. In this paper we study a fundamental challenge to assessing disparate impacts in practice: protected class membership is often not observed in the data. This is particularly a problem in lending and healthcare. We consider the use of an auxiliary data set, such as the U.S. census, to construct models that predict the protected class from proxy variables, such as surname and geolocation. We show that even with such data, a variety of common disparity measures are generally unidentifiable, providing a new perspective on the documented biases of popular proxy-based methods. We provide exact characterizations of the tightest possible set of all possible true disparities that are consistent with the data (and possibly additional assumptions). We further provide optimization-based algorithms for computing and visualizing these sets and statistical tools to assess sampling uncertainty. Together, these enable reliable and robust assessmentsmore »of disparities—an important tool when disparity assessment can have far-reaching policy implications. We demonstrate this in two case studies with real data: mortgage lending and personalized medicine dosing. This paper was accepted by Hamid Nazerzadeh, Guest Editor for the Special Issue on Data-Driven Prescriptive Analytics.« less
  2. There is increasing attention to evaluating the fairness of search system ranking decisions. These metrics often consider the membership of items to particular groups, often identified using protected attributes such as gender or ethnicity. To date, these metrics typically assume the availability and completeness of protected attribute labels of items. However, the protected attributes of individuals are rarely present, limiting the application of fair ranking metrics in large scale systems. In order to address this problem, we propose a sampling strategy and estimation technique for four fair ranking metrics. We formulate a robust and unbiased estimator which can operate even with very limited number of labeled items. We evaluate our approach using both simulated and real world data. Our experimental results demonstrate that our method can estimate this family of fair ranking metrics and provides a robust, reliable alternative to exhaustive or random data annotation.
  3. Consider the problem of determining the effect of a compound on a specific cell type. To answer this question, researchers traditionally need to run an experiment applying the drug of interest to that cell type. This approach is not scalable: given a large number of different actions (compounds) and a large number of different contexts (cell types), it is infeasible to run an experiment for every action-context pair. In such cases, one would ideally like to predict the outcome for every pair while only needing outcome data for a small _subset_ of pairs. This task, which we label "causal imputation", is a generalization of the causal transportability problem. To address this challenge, we extend the recently introduced _synthetic interventions_ (SI) estimator to handle more general data sparsity patterns. We prove that, under a latent factor model, our estimator provides valid estimates for the causal imputation task. We motivate this model by establishing a connection to the linear structural causal model literature. Finally, we consider the prominent CMAP dataset in predicting the effects of compounds on gene expression across cell types. We find that our estimator outperforms standard baselines, thus confirming its utility in biological applications.
  4. Missing data is inevitable in longitudinal clinical trials. Conventionally, the missing at random assumption is assumed to handle missingness, which however is unverifiable empirically. Thus, sensitivity analyses are critically important to assess the robustness of the study conclusions against untestable assumptions. Toward this end, regulatory agencies and the pharmaceutical industry use sensitivity models such as return-to-baseline, control-based, and washout imputation, following the ICH E9(R1) guidance. Multiple imputation is popular in sensitivity analyses; however, it may be inefficient and result in an unsatisfying interval estimation by Rubin’s combining rule. We propose distributional imputation in sensitivity analysis, which imputes each missing value by samples from its target imputation model given the observed data. Drawn on the idea of Monte Carlo integration, the distributional imputation estimator solves the mean estimating equations of the imputed dataset. It is fully efficient with theoretical guarantees. Moreover, we propose weighted bootstrap to obtain a consistent variance estimator, taking into account the variabilities due to model parameter estimation and target parameter estimation. The superiority of the distributional imputation framework is validated in the simulation study and an antidepressant longitudinal clinical trial.

  5. Motivated by settings in which predictive models may be required to be non-discriminatory with respect to certain attributes (such as race), but even collecting the sensitive attribute may be forbidden or restricted, we initiate the study of fair learning under the constraint of differential privacy. Our first algorithm is a private implementation of the equalized odds post-processing approach of (Hardt et al., 2016). This algorithm is appealingly simple, but must be able to use protected group membership explicitly at test time, which can be viewed as a form of “disparate treatment”. Our second algorithm is a differentially private version of the oracle-efficient in-processing approach of (Agarwal et al., 2018) which is more complex but need not have access to protected group membership at test time. We identify new tradeoffs between fairness, accuracy, and privacy that emerge only when requiring all three properties, and show that these tradeoffs can be milder if group membership may be used at test time. We conclude with a brief experimental evaluation.