skip to main content

Title: Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination
The increasing impact of algorithmic decisions on people’s lives compels us to scrutinize their fairness and, in particular, the disparate impacts that ostensibly color-blind algorithms can have on different groups. Examples include credit decisioning, hiring, advertising, criminal justice, personalized medicine, and targeted policy making, where in some cases legislative or regulatory frameworks for fairness exist and define specific protected classes. In this paper we study a fundamental challenge to assessing disparate impacts in practice: protected class membership is often not observed in the data. This is particularly a problem in lending and healthcare. We consider the use of an auxiliary data set, such as the U.S. census, to construct models that predict the protected class from proxy variables, such as surname and geolocation. We show that even with such data, a variety of common disparity measures are generally unidentifiable, providing a new perspective on the documented biases of popular proxy-based methods. We provide exact characterizations of the tightest possible set of all possible true disparities that are consistent with the data (and possibly additional assumptions). We further provide optimization-based algorithms for computing and visualizing these sets and statistical tools to assess sampling uncertainty. Together, these enable reliable and robust assessments more » of disparities—an important tool when disparity assessment can have far-reaching policy implications. We demonstrate this in two case studies with real data: mortgage lending and personalized medicine dosing. This paper was accepted by Hamid Nazerzadeh, Guest Editor for the Special Issue on Data-Driven Prescriptive Analytics. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Management Science
Sponsoring Org:
National Science Foundation
More Like this
  1. Assessing the fairness of a decision making system with respect to a protected class, such as gender or race, is challenging when class membership labels are unavailable. Probabilistic models for predicting the protected class based on observable proxies, such as surname and geolocation for race, are sometimes used to impute these missing labels for compliance assessments. Empirically, these methods are observed to exaggerate disparities, but the reason why is unknown. In this paper, we decompose the biases in estimating outcome disparity via threshold-based imputation into multiple interpretable bias sources, allowing us to explain when over- or underestimation occurs. We also propose an alternative weighted estimator that uses soft classification, and show that its bias arises simply from the conditional covariance of the outcome with the true class membership. Finally, we illustrate our results with numerical simulations and a public dataset of mortgage applications, using geolocation as a proxy for race. We confirm that the bias of threshold-based imputation is generally upward, but its magnitude varies strongly with the threshold chosen. Our new weighted estimator tends to have a negative bias that is much simpler to analyze and reason about.
  2. Where machine-learned predictive risk scores inform high-stakes decisions, such as bail and sentencing in criminal justice, fairness has been a serious concern. Recent work has characterized the disparate impact that such risk scores can have when used for a binary classification task. This may not account, however, for the more diverse downstream uses of risk scores and their non-binary nature. To better account for this, in this paper, we investigate the fairness of predictive risk scores from the point of view of a bipartite ranking task, where one seeks to rank positive examples higher than negative ones. We introduce the xAUC disparity as a metric to assess the disparate impact of risk scores and define it as the difference in the probabilities of ranking a random positive example from one protected group above a negative one from another group and vice versa. We provide a decomposition of bipartite ranking loss into components that involve the discrepancy and components that involve pure predictive ability within each group. We use xAUC analysis to audit predictive risk scores for recidivism prediction, income prediction, and cardiac arrest prediction, where it describes disparities that are not evident from simply comparing within-group predictive performance.
  3. Research and practical development of data-anonymization techniques have proliferated in recent years. Yet, limited attention has been paid to examine the potentially disparate impact of privacy protection on underprivileged subpopulations. This study is one of the first attempts to examine the extent to which data anonymization could mask the gross statistical disparities between subpopulations in the data. We first describe two common mechanisms of data anonymization and two prevalent types of statistical evidence for disparity. Then, we develop conceptual foundation and mathematical formalism demonstrating that the two data-anonymization mechanisms have distinctive impacts on the identifiability of disparity, which also varies based on its statistical operationalization. After validating our findings with empirical evidence, we discuss the business and policy implications, highlighting the need for firms and policy makers to balance between the protection of privacy and the recognition/rectification of disparate impact. This paper was accepted by Chris Forman, information systems.
  4. Algorithmic decisions made by machine learning models in high-stakes domains may have lasting impacts over time. However, naive applications of standard fairness criterion in static settings over temporal domains may lead to delayed and adverse effects. To understand the dynamics of performance disparity, we study a fairness problem in Markov decision processes (MDPs). Specifically, we propose return parity, a fairness notion that requires MDPs from different demographic groups that share the same state and action spaces to achieve approximately the same expected time-discounted rewards. We first provide a decomposition theorem for return disparity, which decomposes the return disparity of any two MDPs sharing the same state and action spaces into the distance between group-wise reward functions, the discrepancy of group policies, and the discrepancy between state visitation distributions induced by the group policies. Motivated by our decomposition theorem, we propose algorithms to mitigate return disparity via learning a shared group policy with state visitation distributional alignment using integral probability metrics. We conduct experiments to corroborate our results, showing that the proposed algorithm can successfully close the disparity gap while maintaining the performance of policies on two real-world recommender system benchmark datasets.
  5. Personalized recommendation based on multi-arm bandit (MAB) algorithms has shown to lead to high utility and efficiency as it can dynamically adapt the recommendation strategy based on feedback. However, unfairness could incur in personalized recommendation. In this paper, we study how to achieve user-side fairness in personalized recommendation. We formulate our fair personalized recommendation as a modified contextual bandit and focus on achieving fairness on the individual whom is being recommended an item as opposed to achieving fairness on the items that are being recommended. We introduce and define a metric that captures the fairness in terms of rewards received for both the privileged and protected groups. We develop a fair contextual bandit algorithm, Fair-LinUCB, that improves upon the traditional LinUCB algorithm to achieve group-level fairness of users. Our algorithm detects and monitors unfairness while it learns to recommend personalized videos to students to achieve high efficiency. We provide a theoretical regret analysis and show that our algorithm has a slightly higher regret bound than LinUCB. We conduct numerous experimental evaluations to compare the performances of our fair contextual bandit to that of LinUCB and show that our approach achieves group-level fairness while maintaining a high utility.