skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three Approaches for Managing Stiffness in Origami-Inspired Mechanisms
Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.  more » « less
Award ID(s):
1663345 1240417
PAR ID:
10092480
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Page Range / eLocation ID:
V05BT07A056
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Static analysis tools are frequently used to scan the source code and detect deviations from the project coding guidelines. Given their importance, linters are often introduced to classrooms to educate students on how to detect and potentially avoid these code anti-patterns. However, little is known about their effectiveness in raising students’ awareness, given that these linters tend to generate a large number of false positives. To increase the awareness of potential coding issues that violate coding standards, in this paper, we aim to reflect on our experience with teaching the use of static analysis for the purpose of evaluating its effectiveness in helping students with respect to improving software quality. This paper discusses the results of an experiment in the classroom, over a period of 3 academic semesters, involving 65 submissions that carried out code review activity of 690 rules using PMD. The results of the quantitative and qualitative analysis show that the presence of a set of PMD quality issues influences the acceptance or rejection of the issues, design, and best practices-related categories that take longer time to be resolved, and students acknowledge the potential of using static analysis tools during code review. Through this experiment, code review can turn into a vital part of the educational computing plan. We envision our findings enabling educators to support students with code review strategies in order to raise students’ awareness about static analysis tools and scaffold their coding skills. 
    more » « less
  2. Abstract Motivation MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in gene regulation and phenotype development. The identification of miRNA transcription start sites (TSSs) is critical to understand the functional roles of miRNA genes and their transcriptional regulation. Unlike protein-coding genes, miRNA TSSs are not directly detectable from conventional RNA-Seq experiments due to miRNA-specific process of biogenesis. In the past decade, large-scale genome-wide TSS-Seq and transcription activation marker profiling data have become available, based on which, many computational methods have been developed. These methods have greatly advanced genome-wide miRNA TSS annotation. Results In this study, we summarized recent computational methods and their results on miRNA TSS annotation. We collected and performed a comparative analysis of miRNA TSS annotations from 14 representative studies. We further compiled a robust set of miRNA TSSs (RSmirT) that are supported by multiple studies. Integrative genomic and epigenomic data analysis on RSmirT revealed the genomic and epigenomic features of miRNA TSSs as well as their relations to protein-coding and long non-coding genes. Contact xiaoman@mail.ucf.edu, haihu@cs.ucf.edu 
    more » « less
  3. Frank, Brian W.; Jones, Dyan L.; Ryan, Qing X. (Ed.)
    Many of the activities and cognitive processes that physicists use while solving problems are "invisible" to students, which can hinder their acquisition of important expert-like skills. Whereas the detailed calculations performed by researchers are often published in journals and textbooks, other activities such as those undertaken while planning how to approach a problem are rarely discussed in published research. Hence, these activities are especially hidden from students. To better understand how physicists solve problems in their professional research, we leveraged the framework of cognitive task analysis to conduct semi-structured interviews with theoretical physicists (N=11). Here we elucidate the role of planning and preliminary analysis in theorists' work. Theorists described using a variety of activities in order to decide if their project was doable while also generating possible solution paths. These actions included doing cursory calculations, reflecting on previous knowledge, gaining intuition and understanding by studying prior work, and reproducing previous results. We found that theorists typically did not pursue projects unless they had a clear idea of what the outcome of their project would be, or at least knew that they would be able to make progress on the problem. Thus, this preliminary design and analysis phase was highly important for theorists despite being largely hidden from students. We conclude by suggesting potential ways to incorporate our findings into the classroom to give students more numerous opportunities to engage in these expert-like practices. 
    more » « less
  4. In this work, we apply structured input-output analysis to study optimal perturbations and dominant flow patterns in transitional plane Couette-Poiseuille flow. The results demonstrate that this approach predicts the high structured gain of perturbations with wavelengths corresponding to the oblique turbulent bands observed in experiments. The inclination angles of these structures and their Reynolds number dependence are also consistent with previously observed trends. Reynolds number scalings of the maximally amplified structures for an intermediate laminar profile that is equally balanced between plane Couette and Poiseuille flow show an exponent that is at the midpoint of previously computed values for these two flows. However, the dependence of these scaling exponents on the shape of laminar flow as the relative contribution moves from predominately plane Couette to Poiseuille flow is not monotonic and our analysis indicates the emergence of different optimal perturbation structures through the parameter regime. Finally we adapt our approach to estimate the advection speeds of oblique turbulent bands in plane Couette flow and Poiseuille flow by computing their phase speed. The results show good agreement with prior predictions of the convection speeds of these structures from direct numerical simulations, which suggests that this framework has further potential in examining the dynamics of these structures. 
    more » « less
  5. null (Ed.)
    Sponges are often densely populated by microbes that benefit their hosts through nutrition and bioactive secondary metabolites; however, sponges must simultaneously contend with the toxicity of microbes and thwart microbial overgrowth. Despite these fundamental tenets of sponge biology, the patterns of selection in the host sponges’ genomes that underlie tolerance and control of their microbiomes are still poorly understood. To elucidate these patterns of selection, we performed a population genetic analysis on multiple species of Ircinia from Belize, Florida, and Panama using an F ST -outlier approach on transcriptome-annotated RADseq loci. As part of the analysis, we delimited species boundaries among seven growth forms of Ircinia . Our analyses identified balancing selection in immunity genes that have implications for the hosts’ tolerance of high densities of microbes. Additionally, our results support the hypothesis that each of the seven growth forms constitutes a distinct Ircinia species that is characterized by a unique microbiome. These results illuminate the evolutionary pathways that promote stable associations between host sponges and their microbiomes, and that potentially facilitate ecological divergence among Ircinia species. 
    more » « less