skip to main content

Title: Secure Communications in Tiered 5G Wireless Networks with Cooperative Jamming
Cooperative jamming is deemed as a promising physical layer based approach to secure wireless transmissions in the presence of eavesdroppers. In this paper, we investigate cooperative jamming in a two-tier 5G heterogeneous network (HetNet), where the macro base stations (MBSs) at the macrocell tier are equipped with large-scale antenna arrays to provide space diversity and the local base stations (LBSs) at the local cell tier adopt non-orthogonal multiple access (NOMA) to accommodate dense local users. In the presence of imperfect channel state information, we propose three robust secrecy transmission algorithms that can be applied to various scenarios with different security requirements. The first algorithm employs robust beamforming (RBA) that aims to optimize the secrecy rate of a marco user (MU) in a macrocell. The second algorithm provides robust power allocation (RPA) that can optimize the secrecy rate of a local user (LU) in a local cell. The third algorithm tackles a robust joint optimization (RJO) problem across tiers that seeks the maximum secrecy sum rate of a target MU and a target LU robustly. We employ convex optimization techniques to find feasible solutions to these highly non-convex problems. Numerical results demonstrate that the proposed algorithms are highly effective in improving the secrecy performance of a two-tier HetNet.  more » « less
Award ID(s):
1829553 1704274
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Wireless Communications
Page Range / eLocation ID:
1 to 1
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wireless systems must be resilient to jamming attacks. Existing mitigation methods based on multi-antenna processing require knowledge of the jammer's transmit characteristics that may be difficult to acquire, especially for smart jammers that evade mitigation by transmitting only at specific instants. We propose a novel method to mitigate smart jamming attacks on the massive multi-user multiple-input multiple-output (MU-MIMO) uplink which does not require the jammer to be active at any specific instant. By formulating an optimization problem that unifies jammer estimation and mitigation, channel estimation, and data detection, we exploit that a jammer cannot change its subspace within a coherence interval. Theoretical results for our problem formulation show that its solution is guaranteed to recover the users' data symbols under certain conditions. We develop two efficient iterative algorithms for approximately solving the proposed problem formulation: MAED, a parameter-free algorithm which uses forward-backward splitting with a box symbol prior, and SO-MAED, which replaces the prior of MAED with soft-output symbol estimates that exploit the discrete transmit constellation and which uses deep unfolding to optimize algorithm parameters. We use simulations to demonstrate that the proposed algorithms effectively mitigate a wide range of smart jammers without a priori knowledge about the attack type. 
    more » « less
  2. We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi-tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAVs as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum-rate. 
    more » « less
  3. Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of squared Euclidean distances that may not perform optimally on noisy data sets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared l2-norm distance to center the data, which is not valid when the objective does not use the Euclidean distance. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The experimental results demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods. 
    more » « less
  4. null (Ed.)
    We propose a joint channel estimation and data detection (JED) algorithm for cell-free massive multi-user (MU) multiple-input multiple-output (MIMO) systems. Our algorithm yields improved reliability and reduced latency while minimizing the pilot overhead of coherent uplink transmission. The proposed JED method builds upon a novel non-convex optimization problem that we solve approximately and efficiently using forward- backward splitting. We use simulation results to demonstrate that our algorithm achieves robust data transmission with more than 3x reduced pilot overhead compared to orthogonal training in a 128 antenna cell-free massive MU-MIMO system in which 128 users transmit data over 128 time slots. 
    more » « less
  5. In this paper, we investigate the potential of employing reconfigurable intelligent surface (RIS) in integrated sensing and communication (ISAC) systems. In particular, we consider an RIS-assisted ISAC system in which a multi-antenna base station (BS) simultaneously performs multi-user multi-input single-output (MU-MISO) communication and target detection. We aim to jointly design the transmit beamforming and receive filter of the BS, and the reflection coefficients of the RIS to maximize the sum-rate of the communication users, while satisfying a worst-case radar output signal-to-noise ratio (SNR), the transmit power constraint, and the unit modulus property of the reflecting coefficients. An efficient iterative algorithm based on fractional programming (FP), majorization-minimization (MM), and alternative direction method of multipliers (ADMM) is developed to solve the complicated non-convex problem. Simulation results verify the advantage of the proposed RIS-assisted ISAC scheme and the effectiveness of the developed algorithm. 
    more » « less