skip to main content

Title: Secure Communications in Tiered 5G Wireless Networks with Cooperative Jamming
Cooperative jamming is deemed as a promising physical layer based approach to secure wireless transmissions in the presence of eavesdroppers. In this paper, we investigate cooperative jamming in a two-tier 5G heterogeneous network (HetNet), where the macro base stations (MBSs) at the macrocell tier are equipped with large-scale antenna arrays to provide space diversity and the local base stations (LBSs) at the local cell tier adopt non-orthogonal multiple access (NOMA) to accommodate dense local users. In the presence of imperfect channel state information, we propose three robust secrecy transmission algorithms that can be applied to various scenarios with different security requirements. The first algorithm employs robust beamforming (RBA) that aims to optimize the secrecy rate of a marco user (MU) in a macrocell. The second algorithm provides robust power allocation (RPA) that can optimize the secrecy rate of a local user (LU) in a local cell. The third algorithm tackles a robust joint optimization (RJO) problem across tiers that seeks the maximum secrecy sum rate of a target MU and a target LU robustly. We employ convex optimization techniques to find feasible solutions to these highly non-convex problems. Numerical results demonstrate that the proposed algorithms are highly effective in improving more » the secrecy performance of a two-tier HetNet. « less
Authors:
; ; ; ; ;
Award ID(s):
1829553 1704274
Publication Date:
NSF-PAR ID:
10092595
Journal Name:
IEEE Transactions on Wireless Communications
Page Range or eLocation-ID:
1 to 1
ISSN:
1536-1276
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi-tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAVs as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum-rate.
  2. We propose a joint channel estimation and data detection (JED) algorithm for cell-free massive multi-user (MU) multiple-input multiple-output (MIMO) systems. Our algorithm yields improved reliability and reduced latency while minimizing the pilot overhead of coherent uplink transmission. The proposed JED method builds upon a novel non-convex optimization problem that we solve approximately and efficiently using forward- backward splitting. We use simulation results to demonstrate that our algorithm achieves robust data transmission with more than 3x reduced pilot overhead compared to orthogonal training in a 128 antenna cell-free massive MU-MIMO system in which 128 users transmit data over 128 time slots.
  3. Deploying drone-mounted base stations (DBSs) can quickly recover the communications of the mobile users (MUs) in a disaster struck area. That is, the DBSs can act as relay nodes to transmit data from remote working base stations to the MUs. Since the DBSs could be deployed very close to the MUs, the access link data rates between the DBSs and the MUs are well provisioned. However, the DBSs may be far away from the remote working base stations, and thus the backhaul link data rate between a DBS and the remote working base station could be throttled. Free Space Optics (FSO), which has been demonstrated to provision high speed point-to-point wireless communications, can be leveraged to improve the capacity of the backhaul link. Since FSO requires line-of-sight between a DBS and a remote working macro base station, DBSs have to carefully deployed. In this paper, we design a QoS aware drone base station placement and mobile user association strategy (RESCUE) to jointly optimize the DBS deployment, MU association, and bandwidth allocation such that the number of the served MUs in the disaster struck area could be maximized. The performance of RESCUE is validated via extensive simulations.
  4. The mean squared error loss is widely used in many applications, including auto-encoders, multi-target regression, and matrix factorization, to name a few. Despite computational advantages due to its differentiability, it is not robust to outliers. In contrast, ℓ𝑝 norms are known to be robust, but cannot be optimized via, e.g., stochastic gradient descent, as they are non-differentiable. We propose an algorithm inspired by so-called model-based optimization (MBO), which replaces a non-convex objective with a convex model function and alternates between optimizing the model function and updating the solution. We apply this to robust regression, proposing SADM, a stochastic variant of the Online Alternating Direction Method of Multipliers (OADM) to solve the inner optimization in MBO. We show that SADM converges with the rate 𝑂(log𝑇/𝑇) . Finally, we demonstrate experimentally (a) the robustness of ℓ𝑝 norms to outliers and (b) the efficiency of our proposed model-based algorithms in comparison with gradient methods on autoencoders and multi-target regression.
  5. Considered is a multi-channel wireless network for secret communication that uses the signal-to-interference-plus-noise ratio (SINR) as the performance measure. An eavesdropper can intercept encoded messages through a degraded channel of each legitimate transmitter-receiver communication pair. A friendly interferer, on the other hand, may send cooperative jamming signals to enhance the secrecy performance of the whole network. Besides, the state information of the eavesdropping channel may not be known completely. The transmitters and the friendly interferer have to cooperatively decide on the optimal jamming power allocation strategy that balances the secrecy performance with the cost of employing intentional interference, while the eavesdropper tries to maximize her eavesdropping capacity. To solve this problem, we propose and analyze a non-zero-sum game between the network defender and the eavesdropper who can only attack a limited number of channels. We show that the Nash equilibrium strategies for the players are of threshold type. We present an algorithm to find the equilibrium strategy pair. Numerical examples demonstrate the equilibrium and contrast it to baseline strategies.