skip to main content


Title: Mechanistic insights into hydrodeoxygenation of phenol on bimetallic phosphide catalysts
Catalytic hydrodeoxygenation (HDO) of phenolics is a necessary step for upgrading bio-oils to transportation fuels. Bimetallic catalysts offer the potential of increased activities and selectivities for desired products. Adding non-metallic elements, such as phosphorous, allows for charge distribution between the metal and nonmetal atoms, which improves Lewis acid character of catalytic surfaces. This work utilizes experimental and density functional theory (DFT) based calculations to identify potential C–O bond cleavage pathways and product selectivities for HDO reactions on FeMoP, RuMoP, and NiMoP catalysts. Our work demonstrates that FeMoP catalyst favors direct deoxygenation pathway due to a lower activation energy barrier for C–O bond cleavage whereas RuMoP and NiMoP catalysts promote ring hydrogenation first, followed by the cleavage of C–O bond. The Bader charge analysis indicates that for these catalytic systems Mo δ+ site bears a large positive charge which acts as a Lewis acid site for HDO reactions. Overall, we find that trends in the experimental product selectivities are in good agreement with that predicted with DFT calculations.  more » « less
Award ID(s):
1752036
NSF-PAR ID:
10092602
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
8
Issue:
16
ISSN:
2044-4753
Page Range / eLocation ID:
4083 to 4096
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Carbon–carbon bond cleavage reactions, adapted to deconstruct aliphatic hydrocarbon polymers and recover the intrinsic energy and carbon value in plastic waste, have typically been catalysed by metal nanoparticles or air-sensitive organometallics. Metal oxides that serve as supports for these catalysts are typically considered to be inert. Here we show that Earth-abundant, non-reducible zirconia catalyses the hydrogenolysis of polyolefins with activity rivalling that of precious metal nanoparticles. To harness this unusual reactivity, our catalytic architecture localizes ultrasmall amorphous zirconia nanoparticles between two fused platelets of mesoporous silica. Macromolecules translocate from bulk through radial mesopores to the highly active zirconia particles, where the chains undergo selective hydrogenolytic cleavage into a narrow, C 18 -centred distribution. Calculations indicated that C–H bond heterolysis across a Zr–O bond of a Zr(O) 2 adatom model for unsaturated surface sites gives a zirconium hydrocarbyl, which cleaves a C–C bond via β-alkyl elimination. 
    more » « less
  2. Abstract

    Hydrodeoxygenation chemistries play a key role in the upgrading of biomass‐derived feedstocks. Among these, the removal of targeted hydroxyl groups through selective C−O bond cleavage from molecules containing multiple functionalities over heterogeneous catalysts has shown to be a challenge. Herein, we report a highly selective and stable heterogeneous catalyst for hydrodeoxygenation of tartaric acid to succinic acid. The catalyst consists of reduced Mo5+centers promoted by palladium, which facilitate selective C−O bond cleavage, while leaving intact carboxylic acid end groups. Stable catalytic performance over multiple cycles is demonstrated. This catalytic system opens up opportunities for selective processing of biomass‐derived sugar acids with a high degree of chemical functionality.

     
    more » « less
  3. The synthesis and catalytic reactivity of a class of water-tolerant cationic phosphorus-based Lewis acids is reported. Corrole-based phosphorus( v ) cations of the type [ArP(cor)][B(C 6 F 5 ) 4 ] (Ar = C 6 H 5 , 3,5-(CF 3 ) 2 C 6 H 3 ; cor = 5,10,15-(C 6 H 5 ) 3 corrolato 3− , 5,10,15-(C 6 F 5 ) 3 corrolato 3− ) were synthesized and characterized by NMR and X-ray diffraction. The visible electronic absorption spectra of these cationic phosphacorroles depend strongly on the coordination environment at phosphorus, and their Lewis acidities are quantified by spectrophotometric titrations. DFT analyses establish that the character of the P-acceptor orbital comprises P–N antibonding interactions in the basal plane of the phosphacorrole. Consequently, the cationic phosphacorroles display unprecedented stability to water and alcohols while remaining highly active and robust Lewis acid catalysts for carbonyl hydrosilylation, C sp3 –H bond functionalization, and carbohydrate deoxygenation reactions. 
    more » « less
  4. Abstract

    Activation of the dinitrogen triple bond is a crucial step in the overall fixation of atmospheric nitrogen into usable forms for industrial and biological applications. Current synthetic catalysts incorporate metal ions to facilitate the activation and cleavage of dinitrogen. The high price of metal‐based catalysts and the challenge of catalyst recovery during industrial catalytic processes has led to increasing interest in metal‐free catalysts. One step toward metal‐free catalysis is the use of frustrated Lewis pairs (FLPs). In this study, we have examined 18 functionalized carbenes as FLPs to elucidate the influence of steric and electronic effects on the activation of dinitrogen. To test the effects of functionalization on dinitrogen activation, we have performed density functional theory (DFT), multireference, non and extended transition state‐natural orbital for chemical valence (ETS‐NOCV) calculations. Our results suggest that functional groups which introduce strong electron‐withdrawing effects and/or engage in extended π/π* systems lead to the lowering of the dissociation energy of the dinitrogen bond, which further contributes to greater nitrogen activation. We conjecture that these effects are due to enhanced back‐bonding capability of the p orbital of the carbene carbon atoms to the adjacent nitrogen atoms (increasing Lewis basicity of the carbene carbon atom) and enhanced stability of dissociated products. Our concluding remarks include opportunities to extend this activation study to explore the entire catalytic cycle with promising functionalized carbenes for experimental evaluation.

     
    more » « less
  5. The catalytic effects of iridium pincer complexes for the hydrogenation of carbon dioxide were investigated with the Unified Reaction Valley Approach (URVA), exploring the reaction mechanism along the reaction path traced out by the reacting species on the potential energy surface. Further details were obtained with the Local Mode Analysis performed at all stationary points, complemented by the Natural Bond Orbital and Bader’s Quantum Atoms in Molecules analyses. Each of the five reaction paths forming the catalytic cycle were calculated at the DFT level complemented with DLPNO-CCSD(T) single point calculations at the stationary points. For comparison, the non-catalytic reaction was also investigated. URVA curvature profiles identified all important chemical events taking place in the non-catalyzed reaction and in the five reactions forming the catalytic cycle, and their contribution to the activation energy was disclosed. The non-catalytic reaction has a large unfavorable activation energy of 76.3 kcal/mol, predominately caused by HH bond cleave in the H2 reactant. As shown by our study, the main function of the iridium pincer catalyst is to split up the one–step non-catalytic reaction into an energy efficient multistep cycle, where HH bond cleavage is replaced by the cleavage of a weaker IrH bond with a small contribution to the activation energy. The dissociation of the final product from the catalyst requires the cleavage of an IrO bond, which is also weak, and contributes only to a minor extent to the activation energy. This, in summary, leads to the substantial lowering of the overall activation barrier by about 50 kcal/mol for the catalyzed reaction. We hope that this study inspires the community to add URVA to their repertoire for the investigation of catalysis reactions. 
    more » « less