Grafting polymer chains to the surface of nanoparticles overcomes the challenge of nanoparticle dispersion within nanocomposites and establishes high-volume fractions that are found to enable enhanced material mechanical properties. This study utilizes coarse-grained molecular dynamics simulations to quantify how the shear modulus of polymer-grafted nanoparticle (PGN) systems in their glassy state depends on parameters such as strain rate, nanoparticle size, grafting density, and chain length. The results are interpreted through further analysis of the dynamics of chain conformations and volume fraction arguments. The volume fraction of nanoparticles is found to be the most influential variable in deciding the shear modulus of PGN systems. A simple rule of mixture is utilized to express the monotonic dependence of shear modulus on the volume fraction of nanoparticles. Due to the reinforcing effect of nanoparticles, shortening the grafted chains results in a higher shear modulus in PGNs, which is not seen in linear systems. These results offer timely insight into calibrating molecular design parameters for achieving the desired mechanical properties in PGNs.
- Award ID(s):
- 1651002
- PAR ID:
- 10092652
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 15
- Issue:
- 6
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 1120 to 1134
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although the behavior of single chains is integral to the foundation of polymer science, a clear and convincing image of single chains in the solid state has still not been captured. For bottlebrush polymers, understanding their conformation in bulk materials is especially important because their extended backbones may explain their self-assembly and mechanical properties that have been attractive for many applications. Here, single-bottlebrush chains are visualized using single-molecule localization microscopy to study their conformations in a polymer melt composed of linear polymers. By observing bottlebrush polymers with different side chain lengths and grafting densities, we observe the relationship between molecular architecture and conformation. We show that bottlebrushes are significantly more rigid in the solid state than previously measured in solution, and the scaling relationships between persistence length and side chain length deviate from those predicted by theory and simulation. We discuss these discrepancies using mechanisms inspired by polymer-grafted nanoparticles, a conceptually similar system. Our work provides a platform for visualizing single-polymer chains in an environment made up entirely of other polymers, which could answer a number of open questions in polymer science.
-
Naturally occurring nanocomposites like nacre owe their exceptional mechanical properties to high loadings of platelets that are bridged by small volume fractions of polymers. Polymer infiltration into dense assemblies of nanoparticles provides a powerful and potentially scalable approach to manufacture bio-inspired nanocomposites that mimic nacre's architecture. Solvent-driven infiltration of polymers (SIP) into nanoparticle packings formed on top of glassy polymer films is induced via capillary condensation of a solvent in the interstitial voids between nanoparticles (NP), followed by plasticization and transport of polymers into the liquid-filled pores, leading to the formation of the nanocomposite structure. To understand the effect of polymer–nanoparticle interactions on the dynamics of polymer infiltration in SIP, we perform molecular dynamics simulations. The mechanism of polymer infiltration and the influence of interactions between polymer and NPs on the dynamics of the process are investigated. Depending on the strength of interaction, polymer infiltration either follows (a) dissolution-dominated infiltration where plasticized polymer chains remain solvated in the pores and rapidly diffuse into the packing or (b) adhesion-dominated transport where the chains adsorb onto the nanoparticle surface and move slowly through the nanoparticle film as a well-defined front. A non-monotonic trend emerges as the adhesion strength is increased; the infiltration of chains becomes faster with the co-operative effect of adhesion and dissolution as adhesion increases but eventually slows down when the polymer–nanoparticle adhesion dominates.more » « less
-
null (Ed.)The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.more » « less
-
Abstract Poly(lactic acid) (PLA) is a commercially available bio‐based polymer that is a potential alternative to many commodity petrochemical‐based polymers. However, PLA's thermomechanical properties limit its use in many applications. Incorporating polymer‐grafted cellulose nanocrystals (CNCs) is one potential route to improving these mechanical properties. One key challenge in using these polymer‐grafted nanoparticles is to understand which variables associated with polymer grafting are most important for improving composite properties. In this work, poly(ethylene glycol)‐grafted CNCs are used to study the effects of polymer grafting density and molecular weight on the properties of PLA composites. All CNC nanofillers are found to reinforce PLA above the glass transition temperature, but non‐grafted CNCs and CNCs grafted with short PEG chains (<2 kg mol−1) are found to cause significant embrittlement, generally resulting in less than 3% elongation‐at‐break. By grafting higher molecular weight PEG (10 kg mol−1) onto the CNCs at a grafting density where the polymer chains are predicted to be in the semi‐dilute polymer brush conformation (~0.1 chains nm−2), embrittlement can be avoided.