Not AvailableThe demand for energy storage devices with high energy density, power density, and higher efficiencies has motivated researchers to explore novel materials and designs beyond current limitations. Polymer-based dielectric capacitors are flexible, lightweight, self-healable, and compatible with a variety of nanofillers. Despite a plethora of studies on polymer nanocomposites with 2D nanofillers, the role of multilayered 2D nanofillers in polymer nanocomposites in the context of energy storage properties has yet to be determined. In this work, mechanically exfoliated 2D mica nanofillers were incorporated with poly(vinylidene fluoride) (PVDF) polymer to fabricate PVDF-mica-PVDF (PMP) multilayered heterostructure capacitors. A single exfoliated layer of mica with an average thickness of the flakes of 20 nm interfaced within layers of PVDF to form PMP and using two layers of mica to form PVDF/mica/PVDF/mica/PVDF (PMPMP) heterostructure capacitors. Average enhancements of 100% and 170% were measured for the dielectric constants of PMP (εav ∼ 22.9) and PMPMP (εav ∼ 30.8), respectively compared to that of the pristine PVDF (εav ∼ 11.4) films measured using the same setup. The highest discharged energy density of PMP and PMPMP nanocomposite films reached 27.5 J/cm3 (E = 670 MV/m) and 44 J/cm3 (E = 570 MV/m), compared to 11.2 J/cm3 (E = 396 MV/m) for the pristine PVDF capacitor. This work develops a detailed understanding of the use of multilayered 2D nanofillers to develop high-capacitance and high energy density polymeric dielectric capacitors and opens avenues for developing orientation-controlled 2D nanofiller-based capacitors for use in industrial applications. 
                        more » 
                        « less   
                    
                            
                            Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications
                        
                    
    
            The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1900692
- PAR ID:
- 10228810
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 26
- Issue:
- 10
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 2942
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High‐energy‐density storage devices play a major role in modern electronics from traditional lithium‐ion batteries to supercapacitors for a variety of applications from rechargeable devices to advanced military equipment. Despite the mass adoption of polymer capacitors, their application is limited by their low energy densities and low‐temperature tolerance. Polymer nanocomposites based on 2D nanomaterials have superior capacitive energy densities, higher thermal stabilities, and higher mechanical strength as compared to the pristine polymers and nanocomposites based on 0D or 1D nanomaterials, thus making them ideal for high‐energy‐density dielectric energy storage applications. Here, the recent advances in 2D‐nanomaterial‐based nanocomposites and their implications for energy storage applications are reviewed. Nanocomposites based on conducting 2D nanofillers such as graphene, reduced graphene oxide, MXenes, semiconducting 2D nanofillers including transition metal dichalcogenides such as MoS2, dielectric 2D nanofillers including hBN, Mica, Al2O3, TiO2, Ca2Nb3O10and MMT, and their effects on permittivity, dielectric strength, capacitive energy density, efficiency, thermal stability, and the mechanical strength, are discussed. Also, the theory and machine‐learning‐guided design of polymer 2D nanomaterial composites is learnt and the challenges and opportunities for developing ultrahigh‐capacitive‐energy‐density devices based on these nanofiller polymer composites are presented.more » « less
- 
            Grafting polymer chains to the surface of nanoparticles overcomes the challenge of nanoparticle dispersion within nanocomposites and establishes high-volume fractions that are found to enable enhanced material mechanical properties. This study utilizes coarse-grained molecular dynamics simulations to quantify how the shear modulus of polymer-grafted nanoparticle (PGN) systems in their glassy state depends on parameters such as strain rate, nanoparticle size, grafting density, and chain length. The results are interpreted through further analysis of the dynamics of chain conformations and volume fraction arguments. The volume fraction of nanoparticles is found to be the most influential variable in deciding the shear modulus of PGN systems. A simple rule of mixture is utilized to express the monotonic dependence of shear modulus on the volume fraction of nanoparticles. Due to the reinforcing effect of nanoparticles, shortening the grafted chains results in a higher shear modulus in PGNs, which is not seen in linear systems. These results offer timely insight into calibrating molecular design parameters for achieving the desired mechanical properties in PGNs.more » « less
- 
            Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C8) is studied. As a function of grafting density and particle content, polymer dynamics is followed by broadband dielectric spectroscopy and analyzed by an interfacial layer model, whereas the particle dispersion is investigated by small-angle X-ray scattering and analyzed by reverse Monte Carlo simulations. NP dispersions are found to be destabilized only at the highest grafting. The interfacial layer formalism allows the clear identification of the volume fraction of interfacial polymer, with its characteristic time. The strongest dynamical slow-down in the polymer is found for unmodified NPs, while grafting weakens this effect progressively. The combination of all three techniques enables a unique measurement of the true thickness of the interfacial layer, which is ca. 5 nm. Finally, the comparison between longer (C18) and shorter (C8) grafts provides unprecedented insight into the efficacy and tunability of surface modification. It is shown that C8-grafting allows for a more progressive tuning, which goes beyond a pure mass effect.more » « less
- 
            We developed ultra-high energy storage density capacitors using a new class of lead-free bismuth pyrochlorebased dielectric film material systems with high breakdown strength and reliability. The 2 μm-thick pyrochlore ceramic film capacitors have demonstrated ultra-high energy densities around 90 J/cm3 with very low energy loss below 3%, which is achieved by the combination of high permittivity, pseudo-linear dielectric characteristics, and high breakdown electric field over 4.5 MV/cm. Particularly, these pyrochlore ceramic films can endure voltage strength up to ~900 V. These noteworthy pyrochlore ceramic films are fabricated by the lowcost chemical solution deposition process which allows dielectric films to be processed on standard platinized silicon wafers. This new class of capacitors can satisfy the emergent needs for significant reduction in size and weight of capacitors with high energy storage capability in power electronics, electric vehicles, and energy storage in sustainable energy systems. Our research provides a unique and economical platform for the processing of this useful pyrochlore material in large volume for eco-friendly energy applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    