skip to main content


Title: Effect of graphene on the absorption of methanol and crack healing in poly(methyl methacrylate)-based composites
This work is focused on the mass transport of methanol and the methanol-assisted crack healing in poly(methyl methacrylate) (PMMA)–graphene composites at different temperatures. The effect of the fraction of graphene on the mass transport of methanol and the methanol-assisted crack healing is also studied. The experimental results reveal that adding graphene to the PMMA matrix increases the resistance to the migration/diffusion of methanol and polymer chains in the PMMA matrix, and the absorption of methanol follows anomalous diffusion. The activation energies for the case I transport and case II transport in the PMMA–graphene composites are relatively independent of the fraction of graphene, and are larger than the corresponding ones in pure PMMA. Increasing the healing time and healing temperature allows for more polymer chains to migrate/diffuse across fractured surfaces, leading to the increase in the fracture strength of the crack-healed PMMA–graphene composites.  more » « less
Award ID(s):
1634540
NSF-PAR ID:
10092833
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
14
Issue:
36
ISSN:
1744-683X
Page Range / eLocation ID:
7526 to 7533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Utilizing metal–organic frameworks (MOFs) as reinforcing fillers for polymer composites is a promising strategy because of the low density, high specific modulus, and tunable aspect ratio (AR). However, it has not been demonstrated for the MOF-reinforced polymer composite using MOFs with high AR and polymer-grafted surface, both of which are extremely important factors for efficient load transfer and favorable particle–matrix interaction. To this end, we designed an MOF–polymer composite system using high AR MOF PCN-222 as the mechanical reinforcer. Moreover, we developed a synthetic route to graft poly(methyl methacrylate) (PMMA) from the surface of PCN-222 through surface-initiated atomic transfer radical polymerization (SI-ATRP). The successful growth of PMMA on the surface of PCN-222 was confirmed via proton nuclear magnetic resonance and infrared spectroscopy. Through thermogravimetric analysis, the grafting density was found to be 0.18 chains/nm2. The grafted polymer molecular weight was controlled ranging from 50.3 to 158 kDa as suggested by size exclusion chromatography. Finally, we fabricated MOF–polymer composite films by the doctor-blading technique and measured the mechanical properties through the tension mode of dynamic mechanical analysis. We found that the mechanical properties of the composites were improved with increasing grafted PMMA molecular weight. The maximum reinforcement, a 114% increase in Young’s modulus at 0.5 wt % MOF loading in comparison to pristine PMMA films, was achieved when the grafted molecular weight was higher than the matrix molecular weight, which was in good agreement with previous literature. Moreover, our composite presents the highest reinforcement measured via Young’s modulus at low weight loading among MOF-reinforced polymer composites due to the high MOF AR and enhanced interface. Our approach offers great potential for lightweight mechanical reinforcement with high AR MOFs and a generalizable grafting-from strategy for porphyrin-based MOFs. 
    more » « less
  2. This study employs all-atomistic (AA) molecular dynamics (MD) simulations to investigate the crystallization and melting behavior of polar and nonpolar polymer chains on monolayers of graphene and graphene oxide (GO). Polyvinyl alcohol (PVA) and polyethylene (PE) are used as representative polar and nonpolar polymers, respectively. A modified order parameter is introduced to quantify the degree of two-dimensional (2D) crystallization of polymer chains. Our results show that PVA and PE chains exhibit significantly different crystallization behavior. PVA chains tend to form a more rounded, denser, and folded-stemmed lamellar structure, while PE chains tend to form an elongated straight pattern. The presence of oxidation groups on the GO substrate reduces the crystallinity of both PVA and PE chains, which is derived from the analysis of modified order parameter. Meanwhile, the crystallization patterns of polymer chains are influenced by the percentage, chemical components, and distribution of the oxidation groups. In addition, our study reveals that 2D crystalized polymer chains exhibit different melting behavior depending on their polarity. PVA chains exhibit a more molecular weight-dependent melting temperature than PE chains, which have a lower melting temperature and are relatively insensitive to molecular weight. These findings highlight the critical role of substrate and chain polarity in the crystallization and melting of polymer chains. Overall, our study provides valuable insights into the design of graphene-based polymer heterostructures and composites with tailored properties. 
    more » « less
  3. Abstract

    Magnetoactive soft materials, typically composed of magnetic particles dispersed in a soft polymer matrix, are finding many applications in soft robotics due to their reversible and remote shape transformations under magnetic fields. To achieve complex shape transformations, anisotropic, and heterogeneous magnetization profiles must be programmed in the material. However, once programmed and assembled, magnetic soft actuators cannot be easily reconfigured, repurposed, or repaired, which limits their application, their durability, and versatility in their design. Here, magnetoactive soft composites are developed from squid‐derived biopolymers and NdFeB microparticles with tunable ferromagnetic and thermomechanical properties. By leveraging reversible crosslinking nanostructures in the biopolymer matrix, a healing‐assisted assembly process is developed that allows for on‐demand reconfiguration and magnetic reprogramming of magnetoactive composites. This concept in multi‐material modular actuators is demonstrated with programmable deformation modes, self‐healing properties to recover their function after mechanical damage, and shape‐memory behavior to lock in their preferred configuration and un‐actuated catch states. These dynamic magnetic soft composites can enable the modular design and assembly of new types of magnetic actuators, not only eliminating device vulnerabilities through healing and repair but also by providing adaptive mechanisms to reconfigure their function on demand.

     
    more » « less
  4. ABSTRACT

    The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 9–14

     
    more » « less
  5. null (Ed.)
    We incorporated polymer-grafted nanoparticles into ionic and zwitterionic liquids to explore the solvation and confinement effects on their heterogeneous dynamics using quasi-elastic neutron scattering (QENS). 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM-TFSI) mixed with deuterated poly(methyl methacrylate) (d-PMMA)-grafted nanoparticles is studied to unravel how dynamic coupling between PMMA and HMIM-TFSI influence the fast and slow diffusion characteristics of the HMIM + cations. The zwitterionic liquid, 1-butyl-3-methyl imidazole-2-ylidene borane (BMIM-BH 3 ) is critically selected and mixed with PMMA-grafted nanoparticles for comparison in this work as its ions do not self-dissociate and it does not couple with PMMA through ion-dipole interactions as HMIM-TFSI does. We find that long-range unrestricted diffusion of HMIM + cations is higher in well-dispersed particles than in aggregated particle systems, whereas the localized diffusion of HMIM + is measured to be higher in close-packed particles. Translational diffusion dynamics of BMIM-BH 3 is not influenced by any particle structures suggesting that zwitterions do not interact with PMMA. This difference between two ionic liquid types enables us to decouple polymer effects from the diffusion of ionic liquids, which is integral to understand the ionic transport mechanism in ionic liquids confined in polymer-grafted nanoparticle electrolytes. 
    more » « less