skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CO 2 or SO 2 : Should It Stay, or Should It Go?
Award ID(s):
1800329
PAR ID:
10092901
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Journal of Organic Chemistry
ISSN:
0022-3263
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CuZrO 3 has been hypothesized to be a catalytic material with potential applications for CO 2 reduction. Unfortunately, this material has received limited attention in the literature, and to the best of our knowledge the exact crystal structure is still unknown. To address this challenge, we utilize several different structural prediction techniques in concert, including the Universal Structure Predictor: Evolutionary Xtallography (USPEX), the Materials Project Structure Predictor, and the Open Quantum Materials Database (OQMD). Leveraging these structural prediction techniques in conjunction with Density-Functional Theory (DFT) calculations, we determine a possible structure for CuZrO 3 , which resembles a “sandwich” morphology. Our calculations reveal that this new structure is significantly lower in energy than a previously hypothesized perovskite structure, albeit it still has a thermodynamic preference to decompose into CuO and ZrO 2 . In addition, we experimentally tried to synthesize CuZrO 3 based on literature reports and compared computational to experimental X-ray Diffraction (XRD) patterns confirming that the final product is a mixture of CuO and ZrO 2 . Finally, we conducted a computational surface energetics and CO 2 adsorption study on our discovered sandwich morphology, demonstrating that CO 2 can adsorb and activate on the material. However, these CO 2 adsorption results deviate from previously reported results further confirming that the CuZrO 3 is a metastable form and may not be experimentally accessible as a well-mixed oxide, since phase segregation to CuO and ZrO 2 is preferred. Taken together, our combined computational and experimental study provides evidence that the synthesis of CuZrO 3 is extremely difficult and if this oxide exists, it should have a sandwich-like morphology. 
    more » « less
  2. We study optimal capital income and wealth taxation in an economy that reproduces the importance of private businesses for output and inequality. If entrepreneurs are subject to collateral constraints, they face heterogeneous rates of return, which generate a meaningful distinction between capital income and wealth taxation. We find that taxing capital income is preferable to taxing wealth because the efficiency gains from wealth taxation are swamped by the redistributional benefits of taxing the profits of richer entrepreneurs. Consequently, the gains from taxing wealth are modest. This conclusion is robust to the planner’s preference for redistribution and allowing for nonlinear taxes. (JEL D31, H21, H23, H24, H25, K34, L26) 
    more » « less
  3. null (Ed.)
    Reaction of LiOC t Bu 2 Ph with TlPF 6 forms the dimeric Tl 2 (OC t Bu 2 Ph) 2 complex, a rare example of a homoleptic thallium alkoxide complex demonstrating formally two-coordinate metal centers. Characterization of Tl 2 (OC t Bu 2 Ph) 2 by 1 H and 13 C NMR spectroscopy and X-ray crystallography reveals the presence of two isomers differing by the mutual conformation of the alkoxide ligands, and by the planarity of the central Tl–O–Tl–O plane. Tl 2 (OC t Bu 2 Ph) 2 serves as a convenient precursor to the formation of old and new [M(OC t Bu 2 Ph) n ] complexes (M = Cr, Fe, Cu, Zn), including a rare example of T-shaped Zn(OC t Bu 2 Ph) 2 (THF) complex, which could not be previously synthesized using more conventional LiOR/HOR precursors. The reaction of [Ru(cymene)Cl 2 ] 2 with Tl 2 (OC t Bu 2 Ph) 2 results in the formation of a ruthenium( ii ) alkoxide complex. For ruthenium, the initial coordination of the alkoxide triggers C–H activation at the ortho -H of [OC t Bu 2 Ph] which results in its bidentate coordination. In addition to Tl 2 (OC t Bu 2 Ph) 2 , related Tl 2 (OC t Bu 2 (3,5-Me 2 C 6 H 3 )) 2 was also synthesized, characterized, and shown to exhibit similar reactivity with iron and ruthenium precursors. Synthetic, structural, and spectroscopic characterizations are presented. 
    more » « less