Abstract Zank et al. developed models describing the transport of low-frequency incompressible and nearly incompressible turbulence in inhomogeneous flows. The formalism was based on expressing the fluctuating variables in terms of the Elsässar variables and then taking “moments” subject to various closure hypotheses. The turbulence transport models are different according to whether the plasma beta regime is large, of order unity, or small. Here, we show explicitly that the three sets of turbulence transport models admit a conservation representation that resembles the well-known WKB transport equation for Alfvén wave energy density after introducing appropriate definitions of the “pressure” associated with the turbulent fluctuations. This includes introducing a distinct turbulent pressure tensor for 3D incompressible turbulence (the large plasma beta limit) and pressure tensors for quasi-2D and slab turbulence (the plasma beta order-unity or small regimes) that generalize the form of the WKB pressure tensor. Various limits of the different turbulent pressure tensors are discussed. However, the analogy between the conservation form of the turbulence transport models and the WKB model is not close for multiple reasons, including that the turbulence models express fully nonlinear physical processes unlike the strictly linear WKB description. The analysis presented here both serves as a check on the validity and correctness of the turbulence transport models and also provides greater transparency of the energy dissipation term and the “turbulent pressure” in our models, which is important for many practical applications.
more »
« less
A Study of the Effects of the Pore Size on Turbulence Intensity and Turbulence Length Scale in Forced Convection Flow in Porous Media
- Award ID(s):
- 1642262
- PAR ID:
- 10093019
- Date Published:
- Journal Name:
- Proceedings of the 16th International Heat Transfer Conference, IHTC-16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The solar wind (SW) and local interstellar medium (LISM) are turbulent media. Their interaction is governed by complex physical processes and creates heliospheric regions with significantly different properties in terms of particle populations, bulk flow and turbulence. Our knowledge of the solar wind turbulence nature and dynamics mostly relies on near-Earth and near-Sun observations, and has been increasingly improving in recent years due to the availability of a wealth of space missions, including multi-spacecraft missions. In contrast, the properties of turbulence in the outer heliosphere are still not completely understood. In situ observations by Voyager and New Horizons , and remote neutral atom measurements by IBEX strongly suggest that turbulence is one of the critical processes acting at the heliospheric interface. It is intimately connected to charge exchange processes responsible for the production of suprathermal ions and energetic neutral atoms. This paper reviews the observational evidence of turbulence in the distant SW and in the LISM, advances in modeling efforts, and open challenges.more » « less