We propose a diffuser-based lensless underwater optical signal detection system. The system consists of a lensless one-dimensional (1D) camera array equipped with random phase modulators for signal acquisition and one-dimensional integral imaging convolutional neural network (1DInImCNN) for signal classification. During the acquisition process, the encoded signal transmitted by a light-emitting diode passes through a turbid medium as well as partial occlusion. The 1D diffuser-based lensless camera array is used to capture the transmitted information. The captured pseudorandom patterns are then classified through the 1DInImCNN to output the desired signal. We compared our proposed underwater lensless optical signal detection system with an equivalent lens-based underwater optical signal detection system in terms of detection performance and computational cost. The results show that the former outperforms the latter. Moreover, we use dimensionality reduction on the lensless pattern and study their theoretical computational costs and detection performance. The results show that the detection performance of lensless systems does not suffer appreciably. This makes lensless systems a great candidate for low-cost compressive underwater optical imaging and signal detection.
more »
« less
COMPARISON OF DIVER-OPERATED UNDERWATER PHOTOGRAMMETRIC SYSTEMS FOR CORAL REEF MONITORING
Abstract. Underwater photogrammetry is a well-established technique for measuring and modelling the subaquatic environment in fields ranging from archaeology to marine ecology. While for simple tasks the acquisition and processing of images have become straightforward, applications requiring relative accuracy better then 1:1000 are still considered challenging. This study focuses on the metric evaluation of different off-the-shelf camera systems for making high resolution and high accuracy measurements of coral reefs monitoring through time, where the variations to be measured are in the range of a few centimeters per year. High quality and low-cost systems (reflex and mirrorless vs action cameras, i.e. GoPro) with multiple lenses (prime and zoom), different fields of views (from fisheye to moderate wide angle), pressure housing materials and lens ports (dome and flat) are compared. Tests are repeated at different camera to object distances to investigate distance dependent induced errors and assess the accuracy of the photogrammetrically derived models. An extensive statistical analysis of the different systems is performed and comparisons against reference control point measured through a high precision underwater geodetic network are reported.
more »
« less
- Award ID(s):
- 1637396
- PAR ID:
- 10093045
- Date Published:
- Journal Name:
- ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
- Volume:
- XLII-2/W10
- ISSN:
- 2194-9034
- Page Range / eLocation ID:
- 143 to 150
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we present OpenWaters, a real-time open-source underwater simulation kit for generating photorealistic underwater scenes. OpenWaters supports creation of massive amount of underwater images by emulating diverse real-world conditions. It allows for fine controls over every variable in a simulation instance, including geometry, rendering parameters like ray-traced water caustics, scattering, and ground-truth labels. Using underwater depth (distance between camera and object) estimation as the use-case, we showcase and validate the capabilities of OpenWaters to model underwater scenes that are used to train a deep neural network for depth estimation. Our experimental evaluation demonstrates depth estimation using synthetic underwater images with high accuracy, and feasibility of transfer-learning of features from synthetic to real-world images.more » « less
-
null (Ed.)Underwater photogrammetry is increasingly being used by marine ecologists because of its ability to produce accurate, spatially detailed, non-destructive measurements of benthic communities, coupled with affordability and ease of use. However, independent quality control, rigorous imaging system set-up, optimal geometry design and a strict modeling of the imaging process are essential to achieving a high degree of measurable accuracy and resolution. If a proper photogrammetric approach that enables the formal description of the propagation of measurement error and modeling uncertainties is not undertaken, statements regarding the statistical significance of the results are limited. In this paper, we tackle these critical topics, based on the experience gained in the Moorea Island Digital Ecosystem Avatar (IDEA) project, where we have developed a rigorous underwater photogrammetric pipeline for coral reef monitoring and change detection. Here, we discuss the need for a permanent, underwater geodetic network, which serves to define a temporally stable reference datum and a check for the time series of photogrammetrically derived three-dimensional (3D) models of the reef structure. We present a methodology to evaluate the suitability of several underwater camera systems for photogrammetric and multi-temporal monitoring purposes and stress the importance of camera network geometry to minimize the deformations of photogrammetrically derived 3D reef models. Finally, we incorporate the measurement and modeling uncertainties of the full photogrammetric process into a simple and flexible framework for detecting statistically significant changes among a time series of models.more » « less
-
Abstract Underwater imaging enables nondestructive plankton sampling at frequencies, durations, and resolutions unattainable by traditional methods. These systems necessitate automated processes to identify organisms efficiently. Early underwater image processing used a standard approach: binarizing images to segment targets, then integrating deep learning models for classification. While intuitive, this infrastructure has limitations in handling high concentrations of biotic and abiotic particles, rapid changes in dominant taxa, and highly variable target sizes. To address these challenges, we introduce a new framework that starts with a scene classifier to capture large within‐image variation, such as disparities in the layout of particles and dominant taxa. After scene classification, scene‐specific Mask regional convolutional neural network (Mask R‐CNN) models are trained to separate target objects into different groups. The procedure allows information to be extracted from different image types, while minimizing potential bias for commonly occurring features. Using in situ coastal plankton images, we compared the scene‐specific models to the Mask R‐CNN model encompassing all scene categories as a single full model. Results showed that the scene‐specific approach outperformed the full model by achieving a 20% accuracy improvement in complex noisy images. The full model yielded counts that were up to 78% lower than those enumerated by the scene‐specific model for some small‐sized plankton groups. We further tested the framework on images from a benthic video camera and an imaging sonar system with good results. The integration of scene classification, which groups similar images together, can improve the accuracy of detection and classification for complex marine biological images.more » « less
-
Strong adherence to underwater or wet surfaces for applications like tissue adhesion and underwater robotics is a significant challenge. This is especially apparent when switchable adhesion is required that demands rapid attachment, high adhesive capacity, and easy release. Nature displays a spectrum of permanent to reversible attachment from organisms ranging from the mussel to the octopus, providing inspiration for underwater adhesion design that has yet to be fully leveraged in synthetic systems. Here, we review the challenges and opportunities for creating underwater adhesives with a pathway to switchability. We discuss key material, geometric, modeling, and design tools necessary to achieve underwater adhesion similar to the adhesion control demonstrated in nature. Through these interdisciplinary efforts, we envision that bioinspired adhesives can rise to or even surpass the extraordinary capabilities found in biological systems.more » « less