skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-valent nitridorhenium( v ) complexes containing PNP ligands: implications of ligand flexibility
The synthesis of (PNP)Re(N)X (PNP = [2-P(CHMe 2 ) 2 -4-MeC 6 H 3 ] 2 N, X = Cl and Me) complexes is described. The methylnitridorhenium complex 3 was found to react differently with CO and isocyanides, leading to the isolation of a Re( v ) acyl complex 4 and an isocyanide adduct 6 . Two parallel pathways were observed for the reaction of 3 with CO: (1) CO inserts into the Re–Me bond to afford 4 , and (2) 3 isomerizes by distortion of the aryl backbone of the PNP ligand to afford the isomer 3′ . This is followed by the reaction of 3′ with CO to afford the tricarbonyl complex 5 , which was fully characterized. The contrasting reaction of 3 with 2,6-dimethylphenyl isocyanide lends further support for the proposed isomerization pathway. DFT (M06) calculations suggest that insertion of CNR into the Re–Me bond (27.2 kcal mol −1 ) is inaccessible at room temperature. Instead the substrate adds to the metal center via the most accessible face i.e. syn to the rhenium–nitrido bond, to afford 6 . The addition of CO to isomer 3′ is proposed to proceed with a similar mechanism to 2,6-dimethylphenyl isocyanide.  more » « less
Award ID(s):
1664973
PAR ID:
10093159
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
47
Issue:
3
ISSN:
1477-9226
Page Range / eLocation ID:
758 to 768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The mixed isocyanide/carbonyl complexes cis - and trans -[Re(CO) 3 Br(CNAr Dipp2 ) 2 ] (Ar Dipp2 = 2,6-(2,6-(i-Pr) 2 C 6 H 3 ) 2 C 6 H 3 ) can be synthesized from reactions of [Re(CO) 5 Br] and CNAr Dipp2 depending on the conditions applied. Reduction of the neutral Re( i ) species gives the monoanionic complex [Re(CO) 3 (CNAr Dipp2 ) 2 ] − or the neutral [Re(CO) 3 (CNAr Dipp2 ) 2 ], which contain rhenium in the formal oxidation states “−1” and “0”, respectively. 
    more » « less
  2. The reaction of 1,3,5-( i Pr 2 PO) 3 C 6 H 3 with Co 2 (CO) 8 leads to the isolation of a POCOP-type mononuclear pincer complex {κ P ,κ C ,κ P -2,4,6-( i Pr 2 PO) 3 C 6 H 2 }Co(CO) 2 (1) or a tetranuclear species {κ P -{κ P ,κ C ,κ P -2,4,6-( i Pr 2 PO) 3 C 6 H 2 }Co(CO) 2 } 2 Co 2 (CO) 6 (2), depending on the ligand to cobalt ratio employed. The latter compound can be an impurity during the synthesis of {2,6-( i Pr 2 PO) 2 -4-Me 2 N-C 6 H 2 }Co(CO) 2 , when the ligand precursor 5-(dimethylamino)resorcinol is contaminated with phloroglucinol due to incomplete monoamination. Similarly, the reaction of 1,3,5-( i Pr 2 PO) 3 C 6 H 3 with NiCl 2 in the presence of 4-dimethylaminopyridine provides {κ P ,κ C ,κ P -2,4,6-( i Pr 2 PO) 3 C 6 H 2 }NiCl (3) bearing an appended phosphinite group. Structures 1–3 have been studied by X-ray crystallography. 
    more » « less
  3. Abstract Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO, to the NbIVcomplex [(PNP)NbCl2(NtBuAr)] (1) (PNP=N[2‐PiPr2‐4‐methylphenyl]2; Ar=3,5‐Me2C6H3) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(NtBuAr)] (2). Reduction of2with CoCp*2cleaves the P−P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(NtBuAr)] (3). Theoretical studies have been used to understand both the coupling of the P‐atom and the reductive cleavage of the P−P bond. Reaction of3with a two‐electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P−P coupled ligand, namely [(PNPP)Nb=S(NtBuAr)] (4). 
    more » « less
  4. Herein we report the direct observation of C–H bond activation at an isolated mononuclear Pd( iii ) center. The oxidation of the Pd( ii ) complex ( Me N4)Pd II (neophyl)Cl (neophyl = –CH 2 C(CH 3 ) 2 Ph; Me N4 = N , N ′-dimethyl-2,11-diaza[3.3](2,6)pyridinophane) using the mild oxidant ferrocenium hexafluorophosphate (FcPF 6 ) yields the stable Pd( iii ) complex [( Me N4)Pd III (neophyl)Cl]PF 6 . Upon the addition of an acetate source, [( Me N4)Pd III (neophyl)Cl]PF 6 undergoes Csp 2 –H bond activation to yield the cyclometalated product [( Me N4)Pd III (cycloneophyl)]PF 6 . This metalacycle can be independently prepared, allowing for a complete characterization of both the starting and final Pd( iii ) complexes. The C–H activation step can be monitored directly by EPR and UV-Vis spectroscopies, and kinetic isotope effect (KIE) studies suggest that either a pre-association step such as an agostic interaction may be rate limiting, or that the C–H activation is partially rate-limiting in conjunction with ligand rearrangement. Density functional theory calculations support that the reaction proceeds through a κ 3 ligand coordination and that the flexible ligand structure is important for this transformation. Overall, this study represents the first example of discrete C–H bond activation occurring at a Pd( iii ) center through a concerted metalation–deprotonation mechanism, akin to that observed for Pd( ii ) and Pd( iv ) centers. 
    more » « less
  5. Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O. 
    more » « less