Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO−, to the NbIVcomplex [(PNP)NbCl2(N
Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO−, to the NbIVcomplex [(PNP)NbCl2(N
- Award ID(s):
- 2154620
- NSF-PAR ID:
- 10442954
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 52
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract t BuAr)] (1 ) (PNP=N[2‐Pi Pr2‐4‐methylphenyl]2−; Ar=3,5‐Me2C6H3) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(Nt BuAr)] (2 ). Reduction of2 with CoCp*2cleaves the P−P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(Nt BuAr)] (3 ). Theoretical studies have been used to understand both the coupling of the P‐atom and the reductive cleavage of the P−P bond. Reaction of3 with a two‐electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P−P coupled ligand, namely [(PNPP)Nb=S(Nt BuAr)] (4 ). -
Abstract A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡C
t Bu) (2 ) (Menacnac−=[ArNC(CH3)]2CH, Ar=2,6‐i Pr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡Ct Bu(OTf) (1 ) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡Ct Bu)} (4 ), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡Ct Bu(OEt2) (3 ) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2 and4 , was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2 and4 . This study represents the first example of a metathesis reaction between the P‐atom of [PCO]−and an alkylidyne ligand. -
Abstract A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡C
t Bu) (2 ) (Menacnac−=[ArNC(CH3)]2CH, Ar=2,6‐i Pr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡Ct Bu(OTf) (1 ) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡Ct Bu)} (4 ), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡Ct Bu(OEt2) (3 ) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2 and4 , was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2 and4 . This study represents the first example of a metathesis reaction between the P‐atom of [PCO]−and an alkylidyne ligand. -
Abstract We report here a “nonspectator” behavior for an unsupported
L ‐function σ3‐P ligand (i.e. P{N[o ‐NMe‐C6H4]2},1a ) in complex with the cyclopentadienyliron dicarbonyl cation (Fp+). Treatment of1a ⋅Fp+with [(Me2N)3S][Me3SiF2] results in fluoride addition to theP ‐center, giving the isolable crystalline fluorometallophosphorane1aF ⋅Fp that allows a crystallographic assessment of the variance in the Fe−P bond as a function of P‐coordination number. The nonspectator reactivity of1a ⋅Fp+is rationalized on the basis of electronic structure arguments and by comparison to trigonal analogue (Me2N)3P⋅Fp+(i.e.1b ⋅Fp+), which is inert to fluoride addition. These observations establish a nonspectator L/X‐switching in (σ3‐P)–M complexes by reversible access to higher‐coordinate phosphorus ligand fragments. -
Abstract We report here a “nonspectator” behavior for an unsupported
L ‐function σ3‐P ligand (i.e. P{N[o ‐NMe‐C6H4]2},1a ) in complex with the cyclopentadienyliron dicarbonyl cation (Fp+). Treatment of1a ⋅Fp+with [(Me2N)3S][Me3SiF2] results in fluoride addition to theP ‐center, giving the isolable crystalline fluorometallophosphorane1aF ⋅Fp that allows a crystallographic assessment of the variance in the Fe−P bond as a function of P‐coordination number. The nonspectator reactivity of1a ⋅Fp+is rationalized on the basis of electronic structure arguments and by comparison to trigonal analogue (Me2N)3P⋅Fp+(i.e.1b ⋅Fp+), which is inert to fluoride addition. These observations establish a nonspectator L/X‐switching in (σ3‐P)–M complexes by reversible access to higher‐coordinate phosphorus ligand fragments.