skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Catalyst-Controlled Selective Functionalization of Unactivated C–H Bonds in the Presence of Electronically Activated C–H Bonds
Award ID(s):
1700982
PAR ID:
10093207
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
140
Issue:
38
ISSN:
0002-7863
Page Range / eLocation ID:
12247 to 12255
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract Proline residues within proteins lack a traditional hydrogen bond donor. However, the hydrogens of the proline ring are all sterically accessible, with polarized C−H bonds at Hα and Hδ that exhibit greater partial positive character and can be utilized as alternative sites for molecular recognition. C−H/O interactions, between proline C−H bonds and oxygen lone pairs, have been previously identified as modes of recognition within protein structures and for higher‐order assembly of protein structures. In order to better understand intermolecular recognition of proline residues, a series of proline derivatives was synthesized, including 4R‐hydroxyproline nitrobenzoate methyl ester, acylated on the proline nitrogen with bromoacetyl and glycolyl groups, and Boc‐4S‐(4‐iodophenyl)hydroxyproline methyl amide. All three derivatives exhibited multiple close intermolecular C−H/O interactions in the crystallographic state, with H⋅⋅⋅O distances as close as 2.3 Å. These observed distances are well below the 2.72 Å sum of the van der Waals radii of H and O, and suggest that these interactions are particularly favorable. In order to generalize these results, we further analyzed the role of C−H/O interactions in all previously crystallized derivatives of these amino acids, and found that all 26 structures exhibited close intermolecular C−H/O interactions. Finally, we analyzed all proline residues in the Cambridge Structural Database of small‐molecule crystal structures. We found that the majority of these structures exhibited intermolecular C−H/O interactions at proline C−H bonds, suggesting that C−H/O interactions are an inherent and important mode for recognition of and higher‐order assembly at proline residues. Due to steric accessibility and multiple polarized C−H bonds, proline residues are uniquely positioned as sites for binding and recognition via C−H/O interactions. 
    more » « less