skip to main content


Title: Catalytic intramolecular hydroamination of aminoallenes using titanium complexes of chiral, tridentate, dianionic imine-diol ligands
Alkylation of d - or l -phenylalanine or valine alkyl esters was carried out using methyl or phenyl Grignard reagents. Subsequent condensation with salicylaldehyde, 3,5-di- tert -butylsalicylaldehyde, or 5-fluorosalicylaldehyde formed tridentate, X 2 L type, Schiff base ligands. Chiral shift NMR confirmed retention of stereochemistry during synthesis. X-ray crystal structures of four of the ligands show either inter- or intramolecular hydrogen bonding interactions. The ligands coordinate to the titanium reagents Ti(NMe 2 ) 4 or TiCl(NMe 2 ) 3 by protonolysis and displacement of two equivalents of HNMe 2 . The crystal structure of one example of Ti(X 2 L)Cl(NMe 2 ) was determined and the complex has a distorted square pyramidal geometry with an axial NMe 2 ligand. The bis-dimethylamide complexes are active catalysts for the ring closing hydroamination of di- and trisubstituted aminoallenes. The reaction of hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives a mixture of 6-ethyl-2,3,4,5-tetrahydropyridine (40–72%) and both Z - and E -2-propenyl-pyrrolidine (25–52%). The ring closing reaction of 6-methyl-hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives exclusively 2-(2-methyl-propenyl)-pyrrolidine. The pyrrolidine products are obtained with enantiomeric excesses up to 17%.  more » « less
Award ID(s):
1725142
NSF-PAR ID:
10093279
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Catalysis using earth abundant metals is an important goal due to the relative scarcity and expense of precious metal catalysts. It would be even more beneficial to use earth abundant catalysts for the synthesis of common pharmaceutical structural motifs such as pyrrolidine and pyridine. Thus, developing titanium catalysts for asymmetric ring closing hydroamination is a valuable goal. In this work, four sterically encumbered chiral sulfonamides derived from naturally occurring amino acids were prepared. These compounds undergo protonolysis reactions with Ti(NMe 2 ) 4 or Ta(NMe 2 ) 5 to give monomeric complexes as determined by both DOSY NMR and X-ray crystallography. The resulting complexes are active for the ring closing hydroamination hepta-4,5-dienylamine to give a mixture of tetrahydropyridine and pyrrolidine products. However, the titanium complexes convert 6-methylhepta-4,5-dienylamine exclusively to 2-(2-methylpropenyl)pyrrolidine in higher enantioselectivity than those previously reported, with enantiomeric excesses ranging from 18-24%. The corresponding tantalum complexes were more selective with enantiomeric excesses ranging from 33-39%. 
    more » « less
  2. Although BH 3 simply coordinates the endocyclic P of (phospholidino)phosphaketene 1Dipp , the bulkier B(C 6 F 5 ) 3 gives rise to a zwitterionic diphosphirenium, which is a novel type of 2π-electron aromatic system as shown by the calculated NICS values. While the reaction of 1Dipp with Na[PCO(dioxane) x ] is unselective, the same reaction with the sterically bulky (phospholidino)phosphaketene 1Ar** [Ar** = 2,6-bis[di(4- tert -butylphenyl)methyl]-4-methylphenyl selectively affords a sodium bridged dimer containing a hitherto unknown λ 3 ,λ 5 ,λ 3 -triphosphete core. The latter formally results from “P − ” addition to a 1,3-P/C-dipole. Similarly, adamantyl isonitrile adds to 1Dipp giving a 4-membered phosphacycle. In contrast to 1 , the phosphaketene derived from the electrophilic diazaphospholidine-4,5-dione is unstable and reacts with a second molecule of Na[PCO(dioxane) x ] to afford a 1,3,4-oxadiphospholonide derivative. 
    more » « less
  3. High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron( iv )–tosylimido complexes [Fe IV (NTs)(MePy 2 tacn)](OTf) 2 ( 1(IV)NTs ) and [Fe IV (NTs)(Me 2 (CHPy 2 )tacn)](OTf) 2 ( 2(IV)NTs ), (MePy 2 tacn = N -methyl- N , N -bis(2-picolyl)-1,4,7-triazacyclononane, and Me 2 (CHPy 2 )tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)NTs and 2(IV)NTs are rare examples of octahedral iron( iv )–imido complexes and are isoelectronic analogues of the recently described iron( iv )–oxo complexes [Fe IV (O)(L)] 2+ (L = MePy 2 tacn and Me 2 (CHPy 2 )tacn, respectively). 1(IV)NTs and 2(IV)NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1 H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [Fe III (HNTs)(L)] 2+ , 1(III)–NHTs (L = MePy 2 tacn) and 2(III)–NHTs (L = Me 2 (CHPy 2 )tacn) have been isolated after the decay of 1(IV)NTs and 2(IV)NTs in solution, spectroscopically characterized, and the molecular structure of [Fe III (HNTs)(MePy 2 tacn)](SbF 6 ) 2 determined by single crystal X-ray diffraction. Reaction of 1(IV)NTs and 2(IV)NTs with different p -substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)NTs and 2(IV)NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)NTs and 2(IV)NTs with hydrocarbons containing weak C–H bonds results in the formation of 1(III)–NHTs and 2(III)–NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction. 
    more » « less
  4. Abstract

    Binuclear alkyne manganese carbonyls of the type (RC≡CR')Mn2(CO)n(R and R'=methyl or dimethylamino;n=8, 7, 6) and their isomers related to the experimentally known (MeC2NEt2)Mn2(CO)n(n=8, 7) structures have been investigated by density functional theory. The alkyne ligand remains intact in the only low energy (Me2N)2C2Mn2(CO)8isomer, which has a central Mn2C2tetrahedrane unit and is otherwise analogous to the well‐known (alkyne)Co2(CO)6derivatives except for one more CO group per metal atom. The low‐energy structures of the unsaturated (Me2N)2C2Mn2(CO)n(n=7, 6) systems include isomers in which the nitrogen atom of one of the dimethylamino groups as well as the C≡C triple bond of the alkyne is coordinated to the central Mn2unit. In other low‐energy (Me2N)2C2Mn2(CO)n(n=7, 6) isomers the alkyne C≡C triple bond has broken completely to form two separate bridging dimethylaminocarbyne Me2NC ligands analogous to the experimentally known iron carbonyl complex (Et2NC)2Fe2(CO)6. The (alkyne)Mn2(CO)n(n=8, 7, 6) systems of the alkynes MeC≡CMe and Me2NC≡CMe with methyl substituents have significantly more complicated potential surfaces. In these systems the lowest energy isomers have bridging ligands derived from the alkyne in which one or two hydrogen atoms have migrated from a methyl group to one or both of the alkyne carbon atoms. These bridging ligands include allene, manganallyl, and vinylcarbene ligands, the first two of which have been realized experimentally in research by Adams and coworkers. Theoretical studies suggest that the mechanism for the conversion of the simple alkyne octacarbonyl (MeC2NMe2)Mn2(CO)8to the dimethylaminomanganaallyl complex Mn2(CO)7[μ‐η4‐C3H3Me2] involves decarbonylation to the heptacarbonyl and the hexacarbonyl complexes. Subsequent hydrogen migrations then occur through intermediates with C−H−Mn agostic interactions to give the final product. Eight transition states for this mechanistic sequence have been identified with activation energies of ∼20 kcal/mol for the first hydrogen migration and ∼14 kcal/mol for the second hydrogen migration.

     
    more » « less
  5. Harmata, Michael (Ed.)
    Several years ago, a small family of diterpenoid natural products attracted our attention as novel targets for synthesis studies. Initially, four compounds were independently characterized by the research teams of Vidari1 and Steglich.2 Trichoaurantianolides AeD (1e4 of Fig. 9.1) were isolated from fruiting bodies of the mushrooms Tricholoma aurantium and Tricholoma fracticum in 1995. Subsequent efforts of Stermer and coworkers3 described the isolation of the closely related lepistal (5) and lepistol (6) of Fig. 9.2 as the corresponding C8 deoxygenated compounds of this family. In addition, the corresponding acetate of trichoaurantianolide B was discovered and named as 6-O-aetyl- trichoaurantin (7).2 Structure assignments were based upon extensive nuclear magnetic resonance (NMR) studies, and the features of relative stereo- chemistry were confirmed by an X-ray crystallographic analysis of trichoaurantianolide B (2).1b,2 These original investigators described the trichoaurantianolides as examples of a new class of diterpenes named as neodolastanes that signified a structural relationship to the tricyclic metabo- lites of marine origins known as dolastanes as represented by dolatriol (8)4 and the clavularane 95 of Fig. 9.2. Neodolastanes were defined as substances in which the bridgehead methyl substituent appears in a vicinal relationship with respect to the isopropyl group as exemplified in 4,5-deoxyneodolabelline (10) of Fig. 9.2, a related class of marine natural products.6 Steglich and coworkers2 also indicated an assignment of absolute stereo- chemistry for 2 that was based on Hamilton’s applications of linear-hypothesis testing of crystallographic data. This seldom-used technique was in agreement with the proposed absolute configuration of 2 that was advanced by Vidari, based on an assessment of the observed Cotton effects in CD spectroscopy. In 2003, Ohta and coworkers7 reported the discovery of related neodolastanes tricholomalides A, B, and C (structures 11, 12, and 13 of Fig. 9.3) from Tricholoma sp. They concluded that the tricholomalides possessed the opposite absolute configuration claimed for the trichoaurantianolides. This conclusion was based upon the independent analysis of their circular dichroism studies. By application of the octant rule for substituent effects on cisoid a,b- unsaturated ketones,8 Ohta and coworkers suggested a revision of the prior assignment of absolute configuration for the trichoaurantianolides. This asser- tion was advanced in spite of the consistently positive specific rotations recorded in different solvents for trichoaurantianolides A, B, and C1,2 versus the negative values of tricholomalides A (11) and B (12) (compare values in Figs. 9.1 and 9.3). Note that tricholomalide C (13) only differs from trichoaurantianolide B (2) as a C-8 diastereomeric alcohol, presented in the antipodal series. The specific rotation of 13 was of little value since it was recorded as [a]0 (c 0.01, MeOH).7 In 2006, Danishefsky described a pathway for the total synthesis of racemic tricholomalides A and B, and this effort led to a revision of the relative C-2 stereochemistry (Fig. 9.3; revised structures 14 and 15).9 It seemed rather unusual that genetically similar fungi would produce closely related metabolites as enantiomers, but certainly this is not unprecedented. As a starting point, this issue lacked clarity, and we concluded that our synthesis plans must unambig- uously address the issues of absolute configuration. The chemistry of dolabellane and dolastane diterpenes has been reviewed.10 The proposed pathway for biosynthesis of the trichoaurantianolides and related compounds (Fig. 9.4) follows an established sequence from geranyl- geranyl pyrophosphate (16), which undergoes p-cation cyclization to initially form the eleven-membered ring of 17. The event is followed by a second cyclization to form the dolabellane cation 18, and this [9.3.0]cyclotetradecane skeleton is central to several families of natural products. Direct capture or elimination from 18 leads to the 3,7-dolabelladiene 19, which presents the most common pattern of unsaturation within this class. Compounds within this group are traditionally numbered beginning with C-1 as the bridgehead carbon bearing the methyl group rather than following the connectivity presented in ger- anylgeranyl 16. The cation 18 also undergoes a 1,2-hydrogen migration and elimination, which leads to a transannular cyclization yielding the 5e7e6 tri- cyclic dolastane 20. The secodolastanes, represented by 21, are a small collec- tion of marine natural products, which arise from oxidative cleavage of C10eC14 in the parent tricycle 20. In analogous fashion, the neodolabellane structure 22 is produced from 18 by stereospecific backbone migrations that result in the vicinal placement of the bridgehead methyl and isopropyl substituents. Transannular cyclizations, stemming from 22, yield the class of neodolastane diterpenes (23). Trichoaurantianolides and the related lepistal A (5) are the result of oxidations and cleavage of the C-ring (C4eC5) of 23, which leads to the features of an unusual butyrolactone system. The guanacastepenes, such as 24,11 and heptemerones, such as 25,12 are primary examples of the 5e7e6 neodolastane family, and these metabolites have also been isolated from fungi sources. A characteristic structural feature is the vicinal, syn-relationship of the bridgehead methyl and isopropyl sub- stituents as compared with the 1,3-trans relationship found in dolastanes (Fig. 9.2, structures 8 and 9). Guanacastepenes have proven to be attractive targets for synthesis studies.11,13 However, these fungal metabolites exhibit the antipodal, absolute stereochemistry as compared with neodolastanes from marine origins, such as sphaerostanol (26) (Fig. 9.5).14 
    more » « less