skip to main content


Title: Catalytic intramolecular hydroamination of aminoallenes using titanium and tantalum complexes of sterically encumbered chiral sulfonamides
Catalysis using earth abundant metals is an important goal due to the relative scarcity and expense of precious metal catalysts. It would be even more beneficial to use earth abundant catalysts for the synthesis of common pharmaceutical structural motifs such as pyrrolidine and pyridine. Thus, developing titanium catalysts for asymmetric ring closing hydroamination is a valuable goal. In this work, four sterically encumbered chiral sulfonamides derived from naturally occurring amino acids were prepared. These compounds undergo protonolysis reactions with Ti(NMe 2 ) 4 or Ta(NMe 2 ) 5 to give monomeric complexes as determined by both DOSY NMR and X-ray crystallography. The resulting complexes are active for the ring closing hydroamination hepta-4,5-dienylamine to give a mixture of tetrahydropyridine and pyrrolidine products. However, the titanium complexes convert 6-methylhepta-4,5-dienylamine exclusively to 2-(2-methylpropenyl)pyrrolidine in higher enantioselectivity than those previously reported, with enantiomeric excesses ranging from 18-24%. The corresponding tantalum complexes were more selective with enantiomeric excesses ranging from 33-39%.  more » « less
Award ID(s):
1725142
NSF-PAR ID:
10186134
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alkylation of d - or l -phenylalanine or valine alkyl esters was carried out using methyl or phenyl Grignard reagents. Subsequent condensation with salicylaldehyde, 3,5-di- tert -butylsalicylaldehyde, or 5-fluorosalicylaldehyde formed tridentate, X 2 L type, Schiff base ligands. Chiral shift NMR confirmed retention of stereochemistry during synthesis. X-ray crystal structures of four of the ligands show either inter- or intramolecular hydrogen bonding interactions. The ligands coordinate to the titanium reagents Ti(NMe 2 ) 4 or TiCl(NMe 2 ) 3 by protonolysis and displacement of two equivalents of HNMe 2 . The crystal structure of one example of Ti(X 2 L)Cl(NMe 2 ) was determined and the complex has a distorted square pyramidal geometry with an axial NMe 2 ligand. The bis-dimethylamide complexes are active catalysts for the ring closing hydroamination of di- and trisubstituted aminoallenes. The reaction of hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives a mixture of 6-ethyl-2,3,4,5-tetrahydropyridine (40–72%) and both Z - and E -2-propenyl-pyrrolidine (25–52%). The ring closing reaction of 6-methyl-hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives exclusively 2-(2-methyl-propenyl)-pyrrolidine. The pyrrolidine products are obtained with enantiomeric excesses up to 17%. 
    more » « less
  2. Asymmetric synthesis of substituted 1,4 cyclohexadienes and cyclobutenes has received great attention in recent years. Strategies such as base metal catalyzed cycloaddition bypass the need of harsh reaction conditions which are often required for synthesis of such motifs. These strategies using base-metals as catalysts are also valuable in constructing substituted cyclic motifs from readily available and inexpensive materials such as dienes and alkynes. Such reactions can be cost effective and environmentally friendly. In past decade, low valent cobalt has shown promising reactivity in forming new C-C and C-X (e. g., X= Si, B, N) bonds in high stereoselectivity. Through our studies, we found that cationic cobalt(I) complexes can catalyze intermolecular cycloaddition reactions of alkyne and 1,3-dienes in regio-and enantioselective manner. We also discovered that the involvement of 4 pi electrons or 2 pi electrons of 1,3-dienes can be controlled by the judicious choice of ligands employed on cobalt leading to [4+2] and [2+2] cycloaddition products respectively in high regio- and stereoselectivity. This excellent selectivity complimented with moderate to good yields provided us with broadly applicable protocol for synthesis of diversely substituted enantiopure cyclic motifs with enantiomeric excesses upto 99%. The scope of this method has been expanded over simple aliphatic and aromatic 1,3-dienes and alkynes bearing various functional groups. The methodical development of this transformation along with the ligand effects and possible mechanisms will be discussed in detail. 
    more » « less
  3. Asymmetric synthesis of substituted 1,4 cyclohexadienes and cyclobutenes has received great attention in recent years. Strategies such as base metal catalyzed cycloaddition bypass the need of harsh reaction conditions which are often required for synthesis of such motifs. These strategies using base-metals as catalysts are also valuable in constructing substituted cyclic motifs from readily available and inexpensive materials such as dienes and alkynes. Such reactions can be cost effective and environmentally friendly. In past decade, low valent cobalt has shown promising reactivity in forming new C-C and C-X (e. g., X= Si, B, N) bonds in high stereoselectivity. Through our studies, we found that cationic cobalt(I) complexes can catalyze intermolecular cycloaddition reactions of alkyne and 1,3-dienes in regio-and enantioselective manner. We also discovered that the involvement of 4-pi electrons or 2-pi electrons of 1,3-dienes can be controlled by the judicious choice of ligands employed on cobalt leading to [4+2] and [2+2] cycloaddition products respectively in high regio- and stereoselectivity. This excellent selectivity complimented with moderate to good yields provided us with broadly applicable protocol for synthesis of diversely substituted enantiopure cyclic motifs with enantiomeric excesses upto 99%. The scope of this method has been expanded over simple aliphatic and aromatic 1,3-dienes and alkynes bearing various functional groups. The methodical development of this transformation along with the ligand effects and possible mechanisms will be discussed in detail. 
    more » « less
  4. Abstract

    A series of various solvents and additives were tested in enantioselective hydroamination/cyclization reactions of aminoalkenes catalyzed by a binaphtholate yttrium catalyst. The functional group tolerance of the catalyst and the influence on the reaction rate and enantioselectivity was studied. Some weakly coordinating polar solvents, such as Et2O, MTBE, and chlorobenzene led to slightly increased reaction rates compared to the less polar solvent benzene, presumably due to a better stabilization of the polar transition state. Stronger binding solvents and additives, such as THF, DMAP, pyrrolidine,n‐propylamine, and 1‐phenylethylamine, decrease the reaction rate and diminish the enantioselectivity of the hydroamination product. Some additives, such as THF, Et2O, MTBE, chloro‐ and bromobenzene, as well as (+)‐sparteine resulted in slightly higher enantioselectivities in the cyclization of the model substrateC‐(1‐allylcyclohexyl)methylamine, although this observation was not generally true for other aminoalkene substrates. The reaction rates and enantioselectivities were depressed in the presence of (−)‐sparteine using the (R)‐binaphtholate‐ligated catalyst. In case ofC‐(1‐allylcyclohexyl)methylamine, the enantioselectivity was switched from 76% ee favoring the (S)‐enantiomer of the hydroamination product when using (+)‐sparteine to 22% ee in favor of the (R)‐enantiomer when (−)‐sparteine was used. The rates of cyclization of aminoalkenes and the resulting enantioselectivities significantly depend on substrate concentration with the highest rate (13.6 h−1) and enantioselectivity (68% ee) observed in dilute conditions (0.05 M) compared to a concentrated solution (0.5 M, 5.0 h−1, 35% ee) for 2,2‐dimethylpent‐4‐enylamine. These observations indicate that the reaction mechanism is shifted in favor of a slower, less enantioselective catalytic cycle involving a higher coordinate species when higher substrate concentrations or stronger binding additives are present.

    magnified image

     
    more » « less
  5. null (Ed.)
    Exploiting earth-abundant iron-based metal complexes as high-performance photosensitizers demands long-lived electronically excited metal-to-ligand charge-transfer (MLCT) states, but these species suffer typically from femtosecond timescale charge-transfer (CT)-state quenching by low-lying nonreactive metal-centered (MC) states. Here, we engineer supermolecular Fe(II) chromophores based on the bis(tridentate-ligand)metal(II)-ethyne-(porphinato)zinc(II) conjugated framework, previously shown to give rise to highly delocalized low-lying 3 MLCT states for other Group VIII metal (Ru, Os) complexes. Electronic spectral, potentiometric, and ultrafast pump–probe transient dynamical data demonstrate that a combination of a strong σ-donating tridentate ligand and a (porphinato)zinc(II) moiety with low-lying π*-energy levels, sufficiently destabilize MC states and stabilize supermolecular MLCT states to realize Fe(II) complexes that express 3 MLCT state photophysics reminiscent of their heavy-metal analogs. The resulting Fe(II) chromophore archetype, FeNHCPZn, features a highly polarized CT state having a profoundly extended 3 MLCT lifetime (160 ps), 3 MLCT phosphorescence, and ambient environment stability. Density functional and domain-based local pair natural orbital coupled cluster [DLPNO-CCSD(T)] theory reveal triplet-state wavefunction spatial distributions consistent with electronic spectroscopic and excited-state dynamical data, further underscoring the dramatic Fe metal-to-extended ligand CT character of electronically excited FeNHCPZn. This design further prompts intense panchromatic absorptivity via redistributing high-energy absorptive oscillator strength throughout the visible spectral domain, while maintaining a substantial excited-state oxidation potential for wide-ranging photochemistry––highlighted by the ability of FeNHCPZn to photoinject charges into a SnO 2 /FTO electrode in a dye-sensitized solar cell (DSSC) architecture. Concepts enumerated herein afford opportunities for replacing traditional rare-metal–based emitters for solar-energy conversion and photoluminescence applications. 
    more » « less