This Innovative Practice Work-In-Progress paper presents a collaborative virtual computer lab (CVCL) environment to support collaborative learning in cloud-based virtual computer labs. With advances of cloud computing and virtualization technologies, a new paradigm of virtual computer labs has emerged, where students carry out labs on virtualized resources remotely through the Internet. Virtual computer labs bring advantages, such as anywhere, anytime, on-demand access of specialized software and hardware. However, with current implementations, it also makes it difficult for students to collaborate, due to the fact that students are assigned separated virtual working spaces in a remote-accessing environment and there is a lack of support for sharing and collaboration. To address this issue, we develop a CVCL environment that allows students to reserve virtual computers labs with multiple participants and support remote real-time collaboration among the participants during a lab. The CVCL environment will implement several well-defined collaborative lab models, including shared remote collaboration, virtual study room, and virtual tutoring center. This paper describes the overall architecture and main features of the CVCL environment and shows preliminary results.
more »
« less
Support Remote Collaboration in Virtual Computer Labs
Computer labs are commonly used in computing education to help students reinforce the knowledge obtained in classrooms and to gain hands-on experience on specific learning subjects. While traditional computer labs are based on physical computer centers on campus, more and more virtual computer lab systems (see, e.g., [1, 2, 3, 4]) have been developed that allow students to carry out labs on virtualized resources remotely through the internet. Virtual computer labs make it possible for students to use their own computers at home, instead of relying on computer centers on campus to work on lab assignments. However, they also make it difficult for students to collaborate, due to the fact that students work remotely and there is a lack of support of sharing and collaboration. This is in contrast to traditional computer labs where students naturally feel the presence of their peers in a physical lab room and can easily work together and help each other if needed. Funded by NSF’s Division of Undergraduate Education, this project develops a collaborative virtual computer lab (CVCL) environment to support collaborative learning in virtual computer labs. The CVCL environment leverages existing open source collaboration tools and desktop sharing technologies and adds new functions unique to virtual computer labs to make it easy for students to collaborate while working on computer labs remotely. It also implements several collaborative lab models to support different forms of collaboration in both formal and informal settings. We have developed the main functions of the CVCL environment and begun to use it in classes in the Computer Science (CS) department at Georgia State University. While the original project focuses on computer labs in its traditional sense, the issue of lack of collaboration applies to much broader learning settings where students work on tasks or assignments on computers, with or without being associated with a lab environment. Due to the high mobility of students in modern campuses and the fact that many learning activities are carried out over the Internet, computer-based learning increasingly happen in students’ personal spaces (e.g., homes, apartments), as opposed to public learning spaces (e.g., laboratories, libraries). In these personal spaces, it is difficult for students to get help from classmates or teaching assistants (TAs) when encountering problems. As a result, collaborative learning is difficult and rare. This is especially true for urban universities such as Georgia State University where a significant portion of students are part-time students and/or commute. To address this issue, we intend to broaden the concept of “virtual computer lab” to include general computer based learning happening in “virtual space,” which is any location where people can meet using networked digital devices [5]. Virtual space is recognized as an increasingly important part of “learning spaces” and asks for support from both the technology aspect and learning theory aspect [5]. Collaborative learning environments that support remote collaboration in virtual computer labs would fill an important need in this broader trend.
more »
« less
- Award ID(s):
- 1712384
- PAR ID:
- 10093418
- Date Published:
- Journal Name:
- ASEE 2019 - the 126th Annual Conference and Exposition, June 15-19, 2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A key promise of adaptive collaborative learning support is the ability to improve learning outcomes by providing individual students with the help they need to collaborate more effectively. These systems have focused on a single platform. However, recent technology-supported collaborative learning platforms allow students to collaborate in different contexts: computer-supported classroom environments, network based online learning environments, or virtual learning environments with pedagogical agents. Our goal is to better understand how students participate in collaborative behaviors across platforms, focusing on a specific type of collaboration - help-giving. We conducted a classroom study (N = 20) to understand how students engage in help-giving across two platforms: an interactive digital learning environment and an online Q&A community. The results indicate that help-giving behavior across the two platforms is mostly influenced by the context rather than by individual differences. We discuss the implications of the results and suggest design recommendations for developing an adaptive collaborative learning support system that promotes learning and transfer.more » « less
-
Computer-mediated collaboration has long been a core research interest in CSCW and HCI. As online social spaces continue to evolve towards more immersive and higher fidelity experiences, more research is still needed to investigate how emerging novel technology may foster and support new and more nuanced forms and experiences of collaboration in virtual environments. Using 30 interviews, this paper focuses on what people may collaborate on and how they collaborate in social Virtual Reality (VR). We broaden current studies on computer-mediated collaboration by highlighting the importance of embodiment for co-presence and communication, replicating offline collaborative activities, and supporting the seamless interplay of work, play, and mundane experiences in everyday lives for experiencing and conceptualizing collaboration in emerging virtual environments. We also propose potential design implications that could further support everyday collaborative activities in social VRmore » « less
-
Abstract: Given that pair programming has proved to be an effective pedagogical approach for teaching programming skills, it is now important to explore alternative collaborative configurations. One popular configuration is where dyads collaborate by sharing a single computer sitting side-by-side. However, prior research points to potential challenges for elementary students when sharing a single computer when collaborating. This prompted us to explore another configuration where dyads sit side by side but collaborate on a shared virtual platform with individual computers. We compared the discourse of students’ collaboration under these two settings. Results show that although there are no significant differences in the amount of collaborative talk between the two configurations, there is qualitative evidence of how differing affordances of two configurations shape collaborative elementary students’ practices.more » « less
-
This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students.more » « less