Computer labs are commonly used in computing education to help students reinforce the knowledge obtained in classrooms and to gain hands-on experience on specific learning subjects. While traditional computer labs are based on physical computer centers on campus, more and more virtual computer lab systems (see, e.g., [1, 2, 3, 4]) have been developed that allow students to carry out labs on virtualized resources remotely through the internet. Virtual computer labs make it possible for students to use their own computers at home, instead of relying on computer centers on campus to work on lab assignments. However, they also make it difficult for students to collaborate, due to the fact that students work remotely and there is a lack of support of sharing and collaboration. This is in contrast to traditional computer labs where students naturally feel the presence of their peers in a physical lab room and can easily work together and help each other if needed. Funded by NSF’s Division of Undergraduate Education, this project develops a collaborative virtual computer lab (CVCL) environment to support collaborative learning in virtual computer labs. The CVCL environment leverages existing open source collaboration tools and desktop sharing technologies and adds new functionsmore »
Working Together Apart through Embodiment: Engaging in Everyday Collaborative Activities in Social Virtual Reality
Computer-mediated collaboration has long been a core research interest in CSCW and HCI. As online social spaces continue to evolve towards more immersive and higher fidelity experiences, more research is still needed to investigate how emerging novel technology may foster and support new and more nuanced forms and experiences of collaboration in virtual environments. Using 30 interviews, this paper focuses on what people may collaborate on and how they collaborate in social Virtual Reality (VR). We broaden current studies on computer-mediated collaboration by highlighting the importance of embodiment for co-presence and communication, replicating offline collaborative activities, and supporting the seamless interplay of work, play, and mundane experiences in everyday lives for experiencing and conceptualizing collaboration in emerging virtual environments. We also propose potential design implications that could further support everyday collaborative activities in social VR
- Award ID(s):
- 2112878
- Publication Date:
- NSF-PAR ID:
- 10355698
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 6
- Issue:
- GROUP
- Page Range or eLocation-ID:
- 1 to 25
- ISSN:
- 2573-0142
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Remote scientific collaborations have been pivotal in generating scientific discoveries and breakthroughs that accelerate research in many fields. Emerging VR applications for remote work, which utilize commercially available head-mounted displays (HMDs), offer the promise to enhance collaboration, through spatial and embodied experiences. However, there is little evidence on how professionals in general, and scientists in particular, could use existing commercial VR applications to support their cognitive and creative collaborative processes while exploring real-world data as part of day-to-day collaborative work. In this paper, we present findings from an empirical study with 14 coral reef scientists, examining how they chose to utilize available resources in existing virtual environments for their ongoing data-driven collaborative research. We shed light on scientists’ data organization practices, identify affordances unique to VR for supporting cognition in a collaborative setting, and highlight design requirements for supporting cognitive and creative collaboration processes in future tools.
-
Today’s classrooms are remarkably different from those of yesteryear. In place of individual students responding to the teacher from neat rows of desks, one more typically finds students working in groups on projects, with a teacher circulating among groups. AI applications in learning have been slow to catch up, with most available technologies focusing on personalizing or adapting instruction to learners as isolated individuals. Meanwhile, an established science of Computer Supported Collaborative Learning has come to prominence, with clear implications for how collaborative learning could best be supported. In this contribution, I will consider how intelligence augmentation could evolve to support collaborative learning as well as three signature challenges of this work that could drive AI forward. In conceptualizing collaborative learning, Kirschner and Erkens (2013) provide a useful 3x3 framework in which there are three aspects of learning (cognitive, social and motivational), three levels (community, group/team, and individual) and three kinds of pedagogical supports (discourse-oriented, representation-oriented, and process-oriented). As they engage in this multiply complex space, teachers and learners are both learning to collaborate and collaborating to learn. Further, questions of equity arise as we consider who is able to participate and in which ways. Overall, this analysis helps usmore »
-
A key promise of adaptive collaborative learning support is the ability to improve learning outcomes by providing individual students with the help they need to collaborate more effectively. These systems have focused on a single platform. However, recent technology-supported collaborative learning platforms allow students to collaborate in different contexts: computer-supported classroom environments, network based online learning environments, or virtual learning environments with pedagogical agents. Our goal is to better understand how students participate in collaborative behaviors across platforms, focusing on a specific type of collaboration - help-giving. We conducted a classroom study (N = 20) to understand how students engage in help-giving across two platforms: an interactive digital learning environment and an online Q&A community. The results indicate that help-giving behavior across the two platforms is mostly influenced by the context rather than by individual differences. We discuss the implications of the results and suggest design recommendations for developing an adaptive collaborative learning support system that promotes learning and transfer.
-
International collaboration between collections, aggregators, and researchers within the biodiversity community and beyond is becoming increasingly important in our efforts to support biodiversity, conservation and the life of the planet. The social, technical, logistical and financial aspects of an equitable biodiversity data landscape – from workforce training and mobilization of linked specimen data, to data integration, use and publication – must be considered globally and within the context of a growing biodiversity crisis. In recent years, several initiatives have outlined paths forward that describe how digital versions of natural history specimens can be extended and linked with associated data. In the United States, Webster (2017) presented the “extended specimen”, which was expanded upon by Lendemer et al. (2019) through the work of the Biodiversity Collections Network (BCoN). At the same time, a “digital specimen” concept was developed by DiSSCo in Europe (Hardisty 2020). Both the extended and digital specimen concepts depict a digital proxy of an analog natural history specimen, whose digital nature provides greater capabilities such as being machine-processable, linkages with associated data, globally accessible information-rich biodiversity data, improved tracking, attribution and annotation, additional opportunities for data use and cross-disciplinary collaborations forming the basis for FAIR (Findable, Accessible, Interoperable,more »