skip to main content


Title: A Hybrid Predictive Control Approach to Trajectory Tracking for a Fully Actuated Biped
We model a three-link fully actuated biped as a hybrid system and propose a prediction-based control algorithm for global tracking of reference trajectories. The proposed control strategy consists of a reference system that generates the desired periodic gait, a virtual system that generates a suitable reference trajectory using prediction, and a tracking control law that steers the biped to the virtual trajectory. The proposed algorithms achieves, in finite time, tracking in two steps. We present mathematical properties that define the main elements in the hybrid predictive controller for achieving convergence to the reference within the first two steps. The results are validated through numerical simulations.  more » « less
Award ID(s):
1710621
NSF-PAR ID:
10093528
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2018 Annual American Control Conference (ACC)
Page Range / eLocation ID:
3526 to 3531
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Allowing for a “virtual” full actuation of a rotary inverted pendulum (RIP) system with only a single physical actuator has been a challenging problem. In this paper, a hybrid control scheme that involves a pole-placement feedback controller and an optimal proportional–integral–derivative (PID) or fractional-order PID (FOPID) controller is proposed to simultaneously enable the tracking control of the rotary arm and the stabilization of the pendulum arm in an input–output feedback linearized RIP system. The PID controller is optimized first with the particle swarm optimization (PSO) to obtain three optimal gains, and then the other two parameters of the FOPID controller are optimized with the PSO. Compared to the optimized PID controller, the optimized FOPID controller improves the tracking and stabilizing accuracy by 53% and 29%, respectively, and demonstrates better adaptability for tracking different reference signals. Moreover, the hybrid FOPID controller exhibits 74.8% and 53% higher tracking accuracy than previous optimized model reference adaptive control PID (MRAC-PID) and linear–quadratic regulator (LQR) controllers, respectively. The proposed hybrid controllers are also digitized with different rules and sampling times, showing a closer performance between the discrete-time and continuous-time hybrid controllers under smaller sampling times.

     
    more » « less
  2. M. Grimble (Ed.)
    Summary

    This paper presents the first model reference adaptive control system for nonlinear, time‐varying, hybrid dynamical plants affected by matched and parametric uncertainties, whose resetting events are unknown functions of time and the plant's state. In addition to a control law and an adaptive law, which resemble those of the classical model reference adaptive control framework for continuous‐time dynamical systems, the proposed framework allows imposing instantaneous variations in the reference model's trajectory to rapidly steer the trajectory tracking error to zero, while retaining the closed‐loop system's ability to follow a user‐defined signal. These results are enabled by the first extension of the classical LaSalle–Yoshizawa theorem to time‐varying hybrid dynamical systems, which is presented in this paper as well. A numerical simulation shows the key features of the proposed adaptive control system and highlights its ability to reduce both the control effort and the trajectory tracking error over a classical model reference adaptive control system applied to the same problem.

     
    more » « less
  3. Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely underexplored. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP. The middle layer translates the desired global behaviors into the robot’s full-body reference trajectories for all directly actuated degrees of freedom, while the lowest layer exponentially tracks those reference trajectories based on the full-order, hybrid, nonlinear robot model. Simulations confirm that the proposed framework ensures stable walking of a planar underactuated biped under different swaying DRS motions and gait types. 
    more » « less
  4. Abstract

    Trajectory optimization with musculoskeletal models can be used to reconstruct measured movements and to predict changes in movements in response to environmental changes. It enables an exhaustive analysis of joint angles, joint moments, ground reaction forces, and muscle forces, among others. However, its application is still limited to simplified problems in two dimensional space or straight motions. The simulation of movements with directional changes, e.g. curved running, requires detailed three dimensional models which lead to a high-dimensional solution space. We extended a full-body three dimensional musculoskeletal model to be specialized for running with directional changes. Model dynamics were implemented implicitly and trajectory optimization problems were solved with direct collocation to enable efficient computation. Standing, straight running, and curved running were simulated starting from a random initial guess to confirm the capabilities of our model and approach: efficacy, tracking and predictive power. Altogether the simulations required 1 h 17 min and corresponded well to the reference data. The prediction of curved running using straight running as tracking data revealed the necessity of avoiding interpenetration of body segments. In summary, the proposed formulation is able to efficiently predict a new motion task while preserving dynamic consistency. Hence, labor-intensive and thus costly experimental studies could be replaced by simulations for movement analysis and virtual product design.

     
    more » « less
  5. This paper offers a novel generalization of a passivity-based, energy tracking controller for robust bipedal walking. Past work has shown that a biped limit cycle with a known, constant mechanical energy can be made robust to uneven terrains and disturbances by actively driving energy to that reference. However, the assumption of a known, constant mechanical energy has limited application of this passivity-based method to simple toy models (often passive walkers). The method presented in this paper allows the passivity-based controller to be used in combination with an arbitrary inner-loop control that creates a limit cycle with a constant generalized system energy. We also show that the proposed control method accommodates arbitrary degrees of underactuation. Simulations on a 7-link biped model demonstrate that the proposed control scheme enlarges the basin of attraction, increases the convergence rate to the limit cycle, and improves robustness to ground slopes. 
    more » « less