This paper presents the first model reference adaptive control system for nonlinear, time‐varying, hybrid dynamical plants affected by matched and parametric uncertainties, whose resetting events are unknown functions of time and the plant's state. In addition to a control law and an adaptive law, which resemble those of the classical model reference adaptive control framework for continuous‐time dynamical systems, the proposed framework allows imposing instantaneous variations in the reference model's trajectory to rapidly steer the trajectory tracking error to zero, while retaining the closed‐loop system's ability to follow a user‐defined signal. These results are enabled by the first extension of the classical LaSalle–Yoshizawa theorem to time‐varying hybrid dynamical systems, which is presented in this paper as well. A numerical simulation shows the key features of the proposed adaptive control system and highlights its ability to reduce both the control effort and the trajectory tracking error over a classical model reference adaptive control system applied to the same problem.
- Award ID(s):
- 1710621
- PAR ID:
- 10093528
- Date Published:
- Journal Name:
- 2018 Annual American Control Conference (ACC)
- Page Range / eLocation ID:
- 3526 to 3531
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
M. Grimble (Ed.)
Summary -
Allowing for a “virtual” full actuation of a rotary inverted pendulum (RIP) system with only a single physical actuator has been a challenging problem. In this paper, a hybrid control scheme that involves a pole-placement feedback controller and an optimal proportional–integral–derivative (PID) or fractional-order PID (FOPID) controller is proposed to simultaneously enable the tracking control of the rotary arm and the stabilization of the pendulum arm in an input–output feedback linearized RIP system. The PID controller is optimized first with the particle swarm optimization (PSO) to obtain three optimal gains, and then the other two parameters of the FOPID controller are optimized with the PSO. Compared to the optimized PID controller, the optimized FOPID controller improves the tracking and stabilizing accuracy by 53% and 29%, respectively, and demonstrates better adaptability for tracking different reference signals. Moreover, the hybrid FOPID controller exhibits 74.8% and 53% higher tracking accuracy than previous optimized model reference adaptive control PID (MRAC-PID) and linear–quadratic regulator (LQR) controllers, respectively. The proposed hybrid controllers are also digitized with different rules and sampling times, showing a closer performance between the discrete-time and continuous-time hybrid controllers under smaller sampling times.
-
This paper offers a novel generalization of a passivity-based, energy tracking controller for robust bipedal walking. Past work has shown that a biped limit cycle with a known, constant mechanical energy can be made robust to uneven terrains and disturbances by actively driving energy to that reference. However, the assumption of a known, constant mechanical energy has limited application of this passivity-based method to simple toy models (often passive walkers). The method presented in this paper allows the passivity-based controller to be used in combination with an arbitrary inner-loop control that creates a limit cycle with a constant generalized system energy. We also show that the proposed control method accommodates arbitrary degrees of underactuation. Simulations on a 7-link biped model demonstrate that the proposed control scheme enlarges the basin of attraction, increases the convergence rate to the limit cycle, and improves robustness to ground slopes.more » « less
-
AIAA (Ed.)In this paper, a novel model reference adaptive control (MRAC) architecture for nonlinear, time-varying, hybrid dynamical systems is applied for the first time to design the control system of a multi-rotor unmanned aerial vehicle (UAV). The proposed control system is specifically designed to address problems of practical interests involving autonomous UAVs transporting unknown, unsteady payloads and subject to instantaneous variations both in their state and in their dynamics. These variations can be due, for instance, to the payload’s dynamics, impacts between the payload and its casing, and sudden payload dropping and pickup. The proposed hybrid MRAC architecture improves the UAV’s trajectory tracking performance over classical MRAC also in the presence of motor failures. The applicability of the proposed framework is validated numerically through the first use of the high-fidelity simulation environment PyChrono for autonomous UAV control system testing.more » « less
-
Implicit Trajectory Planning for Feedback Linearizable Systems: A Time-varying Optimization ApproachWe develop an optimization-based framework for joint real-time trajectory planning and feedback control of feedback-linearizable systems. To achieve this goal, we define a target trajectory as the optimal solution of a time-varying optimization problem. In general, however, such trajectory may not be feasible due to , e.g., nonholonomic constraints. To solve this problem, we design a control law that generates feasible trajectories that asymptotically converge to the target trajectory. More precisely, for systems that are (dynamic) full-state linearizable, the proposed control law implicitly transforms the nonlinear system into an optimization algorithm of sufficiently high order. We prove global exponential convergence to the target trajectory for both the optimization algorithm and the original system. We illustrate the effectiveness of our proposed method on multi-target or multi-agent tracking problems with constraints.more » « less