skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Abstracting causal models
We consider a sequence of successively more restrictive definitions of abstraction for causal models, starting with a notion introduced by Rubenstein et al. called exact transformation that applies to probabilistic causal models, moving to a notion of uniform transformation that applies to deterministic causal models and does not allow differences to be hidden by the ``right'' choice of distribution, and then to abstraction, where the interventions of interest are determined by the map from low-level states to high-level states, and strong abstraction, which takes more seriously all potential interventions in a model, not just the allowed interventions. We show that procedures for combining micro-variables into macro-variables are instances of our notion of strong abstraction, as are all the examples considered by Rubenstein et al.  more » « less
Award ID(s):
1718108 1703846
PAR ID:
10093616
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Abstracting causal models, Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientific models describe natural phenomena at different levels of abstraction. Abstract descriptions can provide the basis for interventions on the system and explanation of observed phenomena at a level of granularity that is coarser than the most fundamental account of the system. Beckers and Halpern [2019], building on work of Rubenstein et al.[2017], developed an account of \emph{abstraction} for causal models that is exact. Here we extend this account to the more realistic case where an abstract causal model offers only an approximation of the underlying system. We show how the resulting account handles the discrepancy that can arise between low- and high-level causal models of the same system, and in the process provide an account of how one causal model approximates another, a topic of independent interest. Finally, we extend the account of approximate abstractions to probabilistic causal models, indicating how and where uncertainty can enter into an approximate abstraction. 
    more » « less
  2. Scientific models describe natural phenomena at different levels of abstraction. Abstract de- scriptions can provide the basis for interven- tions on the system and explanation of ob- served phenomena at a level of granularity that is coarser than the most fundamental account of the system. Beckers and Halpern (2019), building on work of Rubenstein et al. (2017), developed an account of abstraction for causal models that is exact. Here we extend this account to the more realistic case where an abstract causal model offers only an approx- imation of the underlying system. We show how the resulting account handles the discrep- ancy that can arise between low- and high- level causal models of the same system, and in the process provide an account of how one causal model approximates another, a topic of independent interest. Finally, we extend the account of approximate abstractions to prob- abilistic causal models, indicating how and where uncertainty can enter into an approxi- mate abstraction. 
    more » « less
  3. The use of machine learning models in high-stake applications (e.g., healthcare, lending, college admission) has raised growing concerns due to potential biases against protected social groups. Various fairness notions and methods have been proposed to mitigate such biases. In this work, we focus on Counterfactual Fairness (CF), a fairness notion that is dependent on an underlying causal graph and first proposed by Kusner et al. (2017); it requires that the outcome an individual perceives is the same in the real world as it would be in a "counterfactual" world, in which the individual belongs to another social group. Learning fair models satisfying CF can be challenging. It was shown in (Kusner et al. 2017) that a sufficient condition for satisfying CF is to not use features that are descendants of sensitive attributes in the causal graph. This implies a simple method that learns CF models only using non-descendants of sensitive attributes while eliminating all descendants. Although several subsequent works proposed methods that use all features for training CF models, there is no theoretical guarantee that they can satisfy CF. In contrast, this work proposes a new algorithm that trains models using all the available features. We theoretically and empirically show that models trained with this method can satisfy CF. 
    more » « less
  4. We study the problem of learning causal representations from unknown, latent interventions in a general setting, where the latent distribution is Gaussian but the mixing function is completely general. We prove strong identifiability results given unknown single-node interventions, i.e., without having access to the intervention targets. This generalizes prior works which have focused on weaker classes, such as linear maps or paired counterfactual data. This is also the first instance of causal identifiability from non-paired interventions for deep neural network embeddings. Our proof relies on carefully uncovering the high-dimensional geometric structure present in the data distribution after a non-linear density transformation, which we capture by analyzing quadratic forms of precision matrices of the latent distributions. Finally, we propose a contrastive algorithm to identify the latent variables in practice and evaluate its performance on various tasks. 
    more » « less
  5. We study the problem of learning causal representations from unknown, latent interventions in a general setting, where the latent distribution is Gaussian but the mixing function is completely general. We prove strong identifiability results given unknown single-node interventions, i.e., without having access to the intervention targets. This generalizes prior works which have focused on weaker classes, such as linear maps or paired counterfactual data. This is also the first instance of causal identifiability from non-paired interventions for deep neural network embeddings. Our proof relies on carefully uncovering the high-dimensional geometric structure present in the data distribution after a non-linear density transformation, which we capture by analyzing quadratic forms of precision matrices of the latent distributions. Finally, we propose a contrastive algorithm to identify the latent variables in practice and evaluate its performance on various tasks. 
    more » « less