As machine learning (ML) algorithms are used in applications that involve humans, concerns have arisen that these algorithms may be biased against certain social groups. Counterfactual fairness (CF) is a fairness notion proposed in Kusner et al. (2017) that measures the unfairness of ML predictions; it requires that the prediction perceived by an individual in the real world has the same marginal distribution as it would be in a counterfactual world, in which the individual belongs to a different group. Although CF ensures fair ML predictions, it fails to consider the downstream effects of ML predictions on individuals. Since humans are strategic and often adapt their behaviors in response to the ML system, predictions that satisfy CF may not lead to a fair future outcome for the individuals. In this paper, we introduce lookahead counterfactual fairness (LCF), a fairness notion accounting for the downstream effects of ML models which requires the individual future status to be counterfactually fair. We theoretically identify conditions under which LCF can be satisfied and propose an algorithm based on the theorems. We also extend the concept to path-dependent fairness. Experiments on both synthetic and real data validate the proposed method
more »
« less
Counterfactually Fair Representation
The use of machine learning models in high-stake applications (e.g., healthcare, lending, college admission) has raised growing concerns due to potential biases against protected social groups. Various fairness notions and methods have been proposed to mitigate such biases. In this work, we focus on Counterfactual Fairness (CF), a fairness notion that is dependent on an underlying causal graph and first proposed by Kusner et al. (2017); it requires that the outcome an individual perceives is the same in the real world as it would be in a "counterfactual" world, in which the individual belongs to another social group. Learning fair models satisfying CF can be challenging. It was shown in (Kusner et al. 2017) that a sufficient condition for satisfying CF is to not use features that are descendants of sensitive attributes in the causal graph. This implies a simple method that learns CF models only using non-descendants of sensitive attributes while eliminating all descendants. Although several subsequent works proposed methods that use all features for training CF models, there is no theoretical guarantee that they can satisfy CF. In contrast, this work proposes a new algorithm that trains models using all the available features. We theoretically and empirically show that models trained with this method can satisfy CF.
more »
« less
- Award ID(s):
- 2202699
- PAR ID:
- 10534984
- Publisher / Repository:
- Proceedings of the 37th International Conference on Neural Information Processing Systems
- Date Published:
- Format(s):
- Medium: X
- Location:
- Proceedings of the 37th International Conference on Neural Information Processing Systems
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fair machine learning aims to mitigate the biases of model predictions against certain subpopulations regarding sensitive attributes such as race and gender. Among the many existing fairness notions, counterfactual fairness measures the model fairness from a causal perspective by comparing the predictions of each individual from the original data and the counterfactuals. In counterfactuals, the sensitive attribute values of this individual had been modified. Recently, a few works extend counterfactual fairness to graph data, but most of them neglect the following facts that can lead to biases: 1) the sensitive attributes of each node's neighbors may causally affect the prediction w.r.t. this node; 2) the sensitive attributes may causally affect other features and the graph structure. To tackle these issues, in this paper, we propose a novel fairness notion - graph counterfactual fairness, which considers the biases led by the above facts. To learn node representations towards graph counterfactual fairness, we propose a novel framework based on counterfactual data augmentation. In this framework, we generate counterfactuals corresponding to perturbations on each node's and their neighbors' sensitive attributes. Then we enforce fairness by minimizing the discrepancy between the representations learned from the original graph and the counterfactuals for each node. Experiments on both synthetic and real-world graphs show that our framework outperforms the state-of-the-art baselines in graph counterfactual fairness, and also achieves comparable prediction performance.more » « less
-
Fairness-aware machine learning has attracted a surge of attention in many domains, such as online advertising, personalized recommendation, and social media analysis in web applications. Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age. Among many existing fairness notions, counterfactual fairness is a popular notion defined from a causal perspective. It measures the fairness of a predictor by comparing the prediction of each individual in the original world and that in the counterfactual worlds in which the value of the sensitive attribute is modified. A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data. However, in real-world scenarios, the underlying causal model is often unknown, and acquiring such human knowledge could be very difficult. In these scenarios, it is risky to directly trust the causal models obtained from information sources with unknown reliability and even causal discovery methods, as incorrect causal models can consequently bring biases to the predictor and lead to unfair predictions. In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE. Specifically, under certain general assumptions, CLAIRE effectively mitigates the biases from the sensitive attribute with a representation learning framework based on counterfactual data augmentation and an invariant penalty. Experiments conducted on both synthetic and real-world datasets validate the superiority of CLAIRE in both counterfactual fairness and prediction performance.more » « less
-
Algorithmic fairness research has mainly focused on adapting learning models to mitigate discrimination based on protected attributes, yet understanding inherent biases in training data remains largely unexplored. Quantifying these biases is crucial for informed data engineering, as data mining and model development often occur separately. We address this by developing an information-theoretic framework to quantify the marginal impacts of dataset features on the discrimination bias of downstream predictors. We postulate a set of desired properties for candidate discrimination measures and derive measures that (partially) satisfy them. Distinct sets of these properties align with distinct fairness criteria like demographic parity or equalized odds, which we show can be in disagreement and not simultaneously satisfied by a single measure. We use the Shapley value to determine individual features’ contributions to overall discrimination, and prove its effectiveness in eliminating redundancy. We validate our measures through a comprehensive empirical study on numerous real-world and synthetic datasets. For synthetic data, we use a parametric linear structural causal model to generate diverse data correlation structures. Our analysis provides empirically validated guidelines for selecting discrimination measures based on data conditions and fairness criteria, establishing a robust framework for quantifying inherent discrimination bias in datamore » « less
-
Making fair decisions is crucial to ethically implementing machine learning algorithms in social settings. In this work, we consider the celebrated definition of counterfactual fairness. We begin by showing that an algorithm which satisfies counterfactual fairness also satisfies demographic parity, a far simpler fairness constraint. Similarly, we show that all algorithms satisfying demographic parity can be trivially modified to satisfy counterfactual fairness. Together, our results indicate that counterfactual fairness is basically equivalent to demographic parity, which has important implications for the growing body of work on counterfactual fairness. We then validate our theoretical findings empirically, analyzing three existing algorithms for counterfactual fairness against three simple benchmarks. We find that two simple benchmark algorithms outperform all three existing algorithms---in terms of fairness, accuracy, and efficiency---on several data sets. Our analysis leads us to formalize a concrete fairness goal: to preserve the order of individuals within protected groups. We believe transparency around the ordering of individuals within protected groups makes fair algorithms more trustworthy. By design, the two simple benchmark algorithms satisfy this goal while the existing algorithms do not.more » « less
An official website of the United States government

