skip to main content


Title: Unbiased solar H2 production with current density up to 23 mA cm2 by Swiss-cheese black Si coupled with wastewater bioanode
Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique ‘‘Swiss-cheese’’ interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s1 . The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time  more » « less
Award ID(s):
1704992
NSF-PAR ID:
10093790
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Energy & environmental science
Issue:
12
ISSN:
1754-5706
Page Range / eLocation ID:
1088-1099
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H 2 production, which overcomes barriers on anode H 2 O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm −2 ) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoS x catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s −1 . The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m −2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H 2 production practical for the first time. 
    more » « less
  2. Solar water splitting using photoelectrochemical cells (PEC's) is a promising pathway toward clean and sustainable storage of renewable energy. Practical realization of solar-driven synthesis of hydrogen and oxygen integrating light absorption and electrolysis of water has been challenging because of (1) the limited stability of good photovoltaic materials under the required electrochemical conditions, and (2) photovoltaic efficiency losses due to light absorption by catalysts, the electrolyte, and generated bubbles, or reflection at their various interfaces. Herein, we evaluate a novel integrated solar water splitting architecture using efficient silicon heterojunction photovoltaic cells that avoids such losses and exhibits a solar-to-hydrogen (STH) efficiency in excess of 10%. Series-connected silicon Heterojunction with Intrinsic Thin layer (HIT) cells generate sufficient photovoltage for unassisted water splitting, with one of the cells acting as the photocathode. Platinum is deposited on the back (dark) junction of this HIT cell as the catalyst for the hydrogen evolution reaction (HER). The photocathode is protected from corrosion by a TiO 2 layer deposited by atomic layer deposition (ALD) interposed between the HIT cell and the Pt, enabling stable operation for >120 hours. Combined with oxygen evolution reaction (OER) catalysts deposited on a porous metal dark anode, these PEC's achieve stable water splitting with a record high STH efficiency for an integrated silicon photosynthesis device. 
    more » « less
  3. Current artificial photosynthesis (APS) systems are promising for the storage of solar energy via transportable and storable fuels, but the anodic half-reaction of water oxidation is an energy intensive process which in many cases poorly couples with the cathodic half-reaction. Here we demonstrate a self-sustaining microbial photoelectrosynthesis (MPES) system that pairs microbial electrochemical oxidation with photoelectrochemical water reduction for energy efficient H2 generation. MPES reduces the overall energy requirements thereby greatly expanding the range of semiconductors that can be utilized in APS. Due to the recovery of chemical energy from waste organics by the mild microbial process and utilization of cost-effective and stable catalyst/electrode materials, our MPES system produced a stable current of 0.4 mA/cm2 for 24 h without any external bias and ∼10 mA/cm2 with a modest bias under one sun illumination. This system also showed other merits, such as creating benefits of wastewater treatment and facile preparation and scalability. 
    more » « less
  4. Water electrolysis using renewable energy inputs is being actively pursued as a green route for hydrogen production. However, it is limited by the high energy consumption due to the sluggish anodic oxygen evolution reaction (OER) and safety issues associated with H2 and O2 mixing. Here, we replaced OER with an electrocatalytic oxidative dehydrogenation (EOD) of aldehydes for bipolar H2 production and achieved industrial-level current densities at cell voltages much lower than during water electrolysis. Experimental and computational studies suggest a reasonable barrier for C-H dissociation on Cu surfaces, mainly through a diol intermediate, with a potential-dependent competition with the solution-phase Cannizzaro reaction. The kinetics of EOD reaction was further enhanced by a porous CuAg catalyst prepared from a galvanic replacement method. Through Ag incorporation and its modification of the Cu surface, the geometric current density and electrocatalyst durability were significantly improved. Finally, we engineered a bipolar H2 production system in membrane-electrode assembly-based flow cells to facilitate mass transport, achieving a maximum current density of 248 and 390 mA cm−2 at cell voltages of 0.4 V and 0.6 V, respectively. The faradaic efficiency of H2 from both cathode and anode reactions both attained ~100%. Taking advantage of the bipolar H2 production without the issues associated with H2/O2 mixing, an inexpensive, easy-to-manufacture dialysis porous membrane was demonstrated to substitute the costly anion exchange membrane, achieving an energy-efficient and cost-effective process in a simple reactor for H2 production. The estimated H2 price of $2.51/kg from an initial technoeconomic assessment is competitive with US DoE’s “Green H2” targets. 
    more » « less
  5. Solar rechargeable battery combines the advantages of photoelectrochemical devices and batteries and has emerged as an attractive alternative to artificial photosynthesis for large‐scale solar energy harvesting and storage. Due to the low photovoltages by the photoelectrodes, however, most previous demonstrations of unassisted photocharge have been realized on systems with low open circuit potentials (<0.8 V). In response to this critical challenge, here it is shown that the combined photovoltages exceeding 1.4 V can be obtained using a Ta3N5nanotube photoanode and a GaN nanowire/Si photocathode with high photocurrents (>5 mA cm–2). The photoelectrode system makes it possible to operate a 1.2 V alkaline anthraquinone/ferrocyanide redox battery with a high ideal solar‐to‐chemical conversion efficiency of 3.0% without externally applied potentials. Importantly, the photocharged battery is successfully discharged with a high voltage output.

     
    more » « less