skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convolutional Neural Networks for Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix and Magpie Descriptors
Computational prediction of crystal materials properties can help to do large-scale insiliconscreening. Recent studies of material informatics have focused on expert design of multidimensionalinterpretable material descriptors/features. However, successes of deep learning suchas Convolutional Neural Networks (CNN) in image recognition and speech recognition havedemonstrated their automated feature extraction capability to effectively capture the characteristicsof the data and achieve superior prediction performance. Here, we propose CNN-OFM-Magpie, aCNN model with OFM (Orbital-field Matrix) and Magpie descriptors to predict the formationenergy of 4030 crystal material by exploiting the complementarity of two-dimensional OFM featuresand Magpie features. Experiments showed that our method achieves better performance thanconventional regression algorithms such as support vector machines and Random Forest. It is alsobetter than CNN models using only the OFM features, the Magpie features, or the basic one-hotencodings. This demonstrates the advantages of CNN and feature fusion for materials propertyprediction. Finally, we visualized the two-dimensional OFM descriptors and analyzed the featuresextracted by the CNN to obtain greater understanding of the CNN-OFM model.  more » « less
Award ID(s):
1655740
PAR ID:
10093941
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Crystals
Volume:
9
Issue:
4
ISSN:
2073-4352
Page Range / eLocation ID:
191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electronic devices get smaller and smaller in every generation. In micro-/nano-electronic devices such as high electron mobility transistors, heat dissipation has become a crucial design consideration due to the ultrahigh heat flux that has a negative effect on devices' performance and their lifetime. Therefore, thermal transport performance enhancement is required to adapt to the device size reduction. β-Ga2O3 has recently gained significant scientific interest for future power devices because of its inherent material properties such as extremely wide bandgap, outstanding Baliga's figure of merit, large critical electric field, etc. This work aims to use a machine learning approach to search promising substrates or heat sinks for cooling β-Ga2O3, in terms of high interfacial thermal conductance (ITC), from large-scale potential structures taken from existing material databases. With the ITC dataset of 1633 various substrates for β-Ga2O3 calculated by full density functional theory, we trained our recently developed convolutional neural network (CNN) model that utilizes the fused orbital field matrix (OFM) and composition descriptors. Our model proved to be superior in performance to traditional machine learning algorithms such as random forest and gradient boosting. We then deployed the CNN model to predict the ITC of 32 716 structures in contact with β-Ga2O3. The CNN model predicted the top 20 cubic and noncubic substrates with ITC on the same level as density functional theory (DFT) results on β-Ga2O3/YN and β-Ga2O3/MgO interfaces, which has the highest ITC of 1224 and 1211 MW/m2K, respectively, among the DFT-ITC datasets. Phonon density of states, group velocity, and scattering effect on high heat flux transport and consequently increased ITC are also investigated. Moderate to high phonon density of states overlap, high group velocity, and low phonon scattering are required to achieve high ITC. We also found three Magpie descriptors with strong Pearson correlation with ITC, namely, mean atomic number, mean atomic weight, and mean ground state volume per atom. Calculations of such descriptors are computationally efficient, and therefore, these descriptors provide a new route for quickly screening potential substrates from large-scale material pools for high-performance interfacial thermal management of high-electron mobility transistor devices. 
    more » « less
  2. Thermoelectric materials harvest waste heat and convert it into reusable electricity. Thermoelectrics are also widely used in inverse ways such as refrigerators and cooling electronics. However, most popular and known thermoelectric materials to date were proposed and found by intuition, mostly through experiments. Unfortunately, it is extremely time and resource consuming to synthesize and measure the thermoelectric properties through trial-and-error experiments. Here, we develop a convolutional neural network (CNN) classification model that utilizes the fused orbital field matrix and composition descriptors to screen a large pool of materials to discover new thermoelectric candidates with power factor higher than 10 μW/cm K2. The model used our own data generated by high-throughput density functional theory calculations coupled with ab initio scattering and transport package to obtain electronic transport properties without assuming constant relaxation time of electrons, which ensures more reliable electronic transport properties calculations than previous studies. The classification model was also compared to some traditional machine learning algorithms such as gradient boosting and random forest. We deployed the classification model on 3465 cubic dynamically stable structures with non-zero bandgap screened from Open Quantum Materials Database. We identified many high-performance thermoelectric materials with ZT > 1 or close to 1 across a wide temperature range from 300 to 700 K and for both n- and p-type doping with different doping concentrations. Moreover, our feature importance and maximal information coefficient analysis demonstrates two previously unreported material descriptors, namely, mean melting temperature and low average deviation of electronegativity, that are strongly correlated with power factor and thus provide a new route for quickly screening potential thermoelectrics with high success rate. Our deep CNN model with fused orbital field matrix and composition descriptors is very promising for screening high power factor thermoelectrics from large-scale hypothetical structures. 
    more » « less
  3. In this paper, we propose a new deep framework which predicts facial attributes and leverage it as a soft modality to improve face identification performance. Our model is an end to end framework which consists of a convolutional neural network (CNN) whose output is fanned out into two separate branches; the first branch predicts facial attributes while the second branch identifies face images. Contrary to the existing multi-task methods which only use a shared CNN feature space to train these two tasks jointly, we fuse the predicted attributes with the features from the face modality in order to improve the face identification performance. Experimental results show that our model brings benefits to both face identification as well as facial attribute prediction performance, especially in the case of identity facial attributes such as gender prediction. We tested our model on two standard datasets annotated by identities and face attributes. Experimental results indicate that the proposed model outperforms most of the current existing face identification and attribute prediction methods. 
    more » « less
  4. Convolutional Neural Networks (CNN) continue to revolutionize image recognition technology and are being used in non-image related fields such as cybersecurity. They are known to work as feature extractors, identifying patterns within large data sets, but when dealing with nonnatural data, what these features represent is not understood. Several class activation map (CAM) visualization tools are available that assist with understanding the CNN decisions when used with images, but they are not intuitively comprehended when dealing with nonnatural security data. Understanding what the extracted features represent should enable the data analyst and model architect tailor a model to maximize the extracted features while minimizing the computational parameters. In this paper we offer a new tool Model integrated Class Activation Maps, (MiCAM) which allows the analyst the ability to visually compare extracted feature intensities at the individual layer detail. We explore using this new tool to analyse several datasets. First the MNIST handwriting data set to gain a baseline understanding. We then analyse two security data sets: computers process metrics from cloud based application servers that are infected with malware and the CIC-IDS-2017 IP data traffic set and identify how re-ordering nonnatural security related data affects feature extraction performance and identify how reordering the data affect feature extraction performance. 
    more » « less
  5. Abstract Automated manufacturing feature recognition is a crucial link between computer-aided design and manufacturing, facilitating process selection and other downstream tasks in computer-aided process planning. While various methods such as graph-based, rule-based, and neural networks have been proposed for automatic feature recognition, they suffer from poor scalability or computational inefficiency. Recently, voxel-based convolutional neural networks have shown promise in solving these challenges but incur a tradeoff between computational cost and feature resolution. This paper investigates a computationally efficient sparse voxel-based convolutional neural network for manufacturing feature recognition, specifically, an octree-based sparse voxel convolutional neural network. This model is trained on a large-scale manufacturing feature dataset, and its performance is compared to a voxel-based feature recognition model (FeatureNet). The results indicate that the octree-based model yields higher feature recognition accuracy (99.5% on the test dataset) with 44% lower graphics processing unit (GPU) memory consumption than a voxel-based model of comparable resolution. In addition, increasing the resolution of the octree-based model enables recognition of finer manufacturing features. These results indicate that a sparse voxel-based convolutional neural network is a computationally efficient deep learning model for manufacturing feature recognition to enable process planning automation. Moreover, the sparse voxel-based neural network demonstrated comparable performance to a boundary representation-based feature recognition neural network, achieving similar accuracy in single-feature recognition without having access to the exact 3D shape descriptors. 
    more » « less