skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG
Here, a pH-induced nanomechanical switching of i-motif structures incorporated into DNA origami bound onto cysteamine-modified basal plane HOPG was electronically addressed, demonstrating for the first time the electrochemical read-out of the nanomechanics of DNA origami. This paves the way for construction of electrode-integrated bioelectronic nanodevices exploiting DNA origami patterns on conductive supports.  more » « less
Award ID(s):
1231888
PAR ID:
10094014
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
51
Issue:
74
ISSN:
1359-7345
Page Range / eLocation ID:
14111 to 14114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract DNA has emerged as a promising material to address growing data storage demands. We recently demonstrated a structure-based DNA data storage approach where DNA probes are spatially oriented on the surface of DNA origami and decoded using DNA-PAINT. In this approach, larger origami structures could improve the efficiency of reading and writing data. However, larger origami require long single-stranded DNA scaffolds that are not commonly available. Here, we report the engineering of a novel longer DNA scaffold designed to produce a larger rectangle origami needed to expand the origami-based digital nucleic acid memory (dNAM) approach. We confirmed that this scaffold self-assembled into the correct origami platform and correctly positioned DNA data strands using atomic force microscopy and DNA-PAINT super-resolution microscopy. This larger structure enables a 67% increase in the number of data points per origami and will support efforts to efficiently scale up origami-based dNAM. 
    more » « less
  2. Abstract Exploring the structural and electrical properties of DNA origami nanowires is an important endeavor for the advancement of DNA nanotechnology and DNA nanoelectronics. Highly conductive DNA origami nanowires are a desirable target for creating low‐cost self‐assembled nanoelectronic devices and circuits. In this work, the structure‐dependent electrical conductance of DNA origami nanowires is investigated. A silicon nitride (Si3N4) on silicon semiconductor chip with gold electrodes was used for collecting electrical conductance measurements of DNA origami nanowires, which are found to be an order of magnitude less electrically resistive on Si3N4substrates treated with a monolayer of hexamethyldisilazane (HMDS) (∼1013ohms) than on native Si3N4substrates without HMDS (∼1014ohms). Atomic force microscopy (AFM) measurements of the height of DNA origami nanowires on mica and Si3N4substrates reveal that DNA origami nanowires are ∼1.6 nm taller on HMDS‐treated substrates than on the untreated ones indicating that the DNA origami nanowires undergo increased structural deformation when deposited onto untreated substrates, causing a decrease in electrical conductivity. This study highlights the importance of understanding and controlling the interface conditions that affect the structure of DNA and thereby affect the electrical conductance of DNA origami nanowires. 
    more » « less
  3. Zhang, Yuliang (Ed.)
    DNA origami purification is essential for many fields, including biophysics, molecular engineering, and therapeutics. The increasing interest in DNA origami has led to the development of rate-zonal centrifugation (RZC) as a scalable, high yield, and contamination-free method for purifying DNA origami nanostructures. RZC purification uses a linear density gradient of viscous media, such as glycerol or sucrose, to separate molecules according to their mass and shape. However, many methods for creating density gradients are time-consuming because they rely on slow passive diffusion. To expedite the preparation time, we used a LEGO gradient mixer to generate rotational motion and rapidly create a quasi-continuous density gradient with a minimal layering of the viscous media. Rotating two layers of differing concentrations at an angle decreases the time needed to form the density gradient from a few hours to minutes. In this study, the density gradients created by the LEGO gradient mixer were used to purify 3 DNA origami shapes that have different aspect ratios and numbers of components, with an aspect ratio ranging from 1:1 to 1:100 and the number of components up to 2. The gradient created by our LEGO gradient mixer is sufficient to purify folded DNA origami nanostructures from excess staple strands, regardless of their aspect ratios. Moreover, the gradient was able to separate DNA origami dimers from DNA origami monomers. In light of recent advances in large-scale DNA origami production, our method provides an alternative for purifying DNA origami nanostructures in large (gram) quantities in resource-limited settings. 
    more » « less
  4. DNA nanotechnology has broad applications in biomedical drug delivery and pro- grammable materials. Characterization of the self-assembly of DNA origami and quan- tum dots (QDs) is necessary for the development of new DNA-based nanostructures. We use computation and experiment to show that the self-assembly of 3D hierarchi- cal nanostructures can be controlled by programming the binding site number and their positions on DNA origami. Using biotinylated pentagonal pyramid wireframe DNA origamis and streptavidin capped QDs, we demonstrate that DNA origami with 1 binding site at the outer vertex can assemble multi-meric origamis with up to 6 DNA origamis on 1 QD, and DNA origami with 1 binding site at the inner center can only assemble monomeric and dimeric origamis. Meanwhile, the yield percentages of differ- ent multi-meric origamis are controlled by the QD:DNA-origami stoichiometric mixing ratio. DNA origamis with 2 binding sites at the αγ positions (of the pentagon) make larger nanostructures than those with binding sites at the αβ positions. In general, increasing the number of binding sites leads to increases in the nanostructure size. At high DNA origami concentration, the QD number in each cluster becomes the limiting factor for the growth of nanostructures. We find that reducing the QD size can also affect the self-assembly because of the reduced access to the binding sites from more densely packed origamis. 
    more » « less
  5. Over the last decade, DNA origami has matured into one of the most powerful bottom-up nanofabrication techniques. It enables both the fabrication of nanoparticles of arbitrary two-dimensional or three-dimensional shapes, and the spatial organization of any DNA-linked nanomaterial, such as carbon nanotubes, quantum dots, or proteins at ∼5-nm resolution. While widely used within the DNA nanotechnology community, DNA origami has yet to be broadly applied in materials science and device physics, which now rely primarily on top-down nanofabrication. In this article, we first introduce DNA origami as a modular breadboard for nanomaterials and then present a brief survey of recent results demonstrating the unique capabilities created by the combination of DNA origami with existing top-down techniques. Emphasis is given to the open challenges associated with each method, and we suggest potential next steps drawing inspiration from recent work in materials science and device physics. Finally, we discuss some near-term applications made possible by the marriage of DNA origami and top-down nanofabrication. 
    more » « less