This content will become publicly available on June 27, 2025
- Award ID(s):
- 2102455
- PAR ID:
- 10537487
- Publisher / Repository:
- ACS Publications
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry A
- Volume:
- 128
- Issue:
- 25
- ISSN:
- 1089-5639
- Page Range / eLocation ID:
- 4999 to 5008
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Control over the copy number and nanoscale positioning of quantum dots (QDs) is critical to their application to functional nanomaterials design. However, the multiple non-specific binding sites intrinsic to the surface of QDs have prevented their fabrication into multi-QD assemblies with programmed spatial positions. To overcome this challenge, we developed a general synthetic framework to selectively attach spatially addressable QDs on 3D wireframe DNA origami scaffolds using interfacial control of the QD surface. Using optical spectroscopy and molecular dynamics simulation, we investigated the fabrication of monovalent QDs of different sizes using chimeric single-stranded DNA to control QD surface chemistry. By understanding the relationship between chimeric single-stranded DNA length and QD size, we integrated single QDs into wireframe DNA origami objects and visualized the resulting QD-DNA assemblies using electron microscopy. Using these advances, we demonstrated the ability to program arbitrary 3D spatial relationships between QDs and dyes on DNA origami objects by fabricating energy-transfer circuits and colloidal molecules. Our design and fabrication approach enables the geometric control and spatial addressing of QDs together with the integration of other materials including dyes to fabricate hybrid materials for functional nanoscale photonic devices.more » « less
-
Scalable fabrication of two-dimensional (2D) arrays of quantum dots (QDs) and quantum rods (QRs) with nanoscale precision is required for numerous device applications. However, self-assembly–based fabrication of such arrays using DNA origami typically suffers from low yield due to inefficient QD and QR DNA functionalization. In addition, it is challenging to organize solution-assembled DNA origami arrays on 2D device substrates while maintaining their structural fidelity. Here, we reduced manufacturing time from a few days to a few minutes by preparing high-density DNA-conjugated QDs/QRs from organic solution using a dehydration and rehydration process. We used a surface-assisted large-scale assembly (SALSA) method to construct 2D origami lattices directly on solid substrates to template QD and QR 2D arrays with orientational control, with overall loading yields exceeding 90%. Our fabrication approach enables the scalable, high fidelity manufacturing of 2D addressable QDs and QRs with nanoscale orientational and spacing control for functional 2D photonic devices.
-
Nucleic acids self-assembly has rapidly advanced to produce multi-dimensional nanostructures with precise sizes and shapes. DNA nanostructures hold great potential for a wide range of applications, including biocatalysis, smart materials, molecular diagnosis, and therapeutics. Here, we present a study of using dynamic light scattering (DLS) and nanoparticles tracking analysis (NTA) to analyze DNA origami nanostructures for their size distribution and particles concentrations. Compared to DLS, NTA demonstrated higher resolution of size measurement with a smaller FWHM and was well suited for characterizing multimerization of DNA nanostructures. We future used intercalation dye to enhance the fluorescence signals of DNA origami to increase the detection sensitivity. By optimizing intercalation dyes and the dye-to-DNA origami ratio, fluorescent NTA was able to accurately quantify the concentration of dye-intercalated DNA nanostructures, closely matching with values obtained by UV absorbance at 260 nm. This optimized fluorescent NTA method offers an alternative approach for determining the concentration of DNA nanostructures based on their size distribution, in addition to commonly used UV absorbance quantification. This detailed information of size and concentration is not only crucial for production and quality control but could also provide mechanistic insights in various applications of DNA nanomaterials.
-
Abstract Combining surface‐initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI‐TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush‐functionalized DNA nanostructures. We demonstrate that SI‐TcEP can site‐specifically pattern DONs with brushes containing both natural and non‐natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse‐grained simulations predict the conformation of the brush‐functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush‐functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site‐specific growth of polynucleotide brushes. The ability to site‐specifically decorate DONs with brushes of natural and non‐natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.
-
Abstract Combining surface‐initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI‐TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush‐functionalized DNA nanostructures. We demonstrate that SI‐TcEP can site‐specifically pattern DONs with brushes containing both natural and non‐natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse‐grained simulations predict the conformation of the brush‐functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush‐functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site‐specific growth of polynucleotide brushes. The ability to site‐specifically decorate DONs with brushes of natural and non‐natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.