The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $$\epsilon$$-Nash Markov equilibria for $$N$$ players with $$\epsilon$$ converging to zero as $$N$$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $$N$$ as $$N$$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping.
more »
« less
From Nash Equilibria to Chain Recurrent Sets: An Algorithmic Solution Concept for Game Theory
In 1950, Nash proposed a natural equilibrium solution concept for games hence called Nash equilibrium, and proved that all finite games have at least one. The proof is through a simple yet ingenious application of Brouwer’s (or, in another version Kakutani’s) fixed point theorem, the most sophisticated result in his era’s topology—in fact, recent algorithmic work has established that Nash equilibria are computationally equivalent to fixed points. In this paper, we propose a new class of universal non-equilibrium solution concepts arising from an important theorem in the topology of dynamical systems that was unavailable to Nash. This approach starts with both a game and a learning dynamics, defined over mixed strategies. The Nash equilibria are fixpoints of the dynamics, but the system behavior is captured by an object far more general than the Nash equilibrium that is known in dynamical systems theory as chain recurrent set. Informally, once we focus on this solution concept—this notion of “the outcome of the game”—every game behaves like a potential game with the dynamics converging to these states. In other words, unlike Nash equilibria, this solution concept is algorithmic in the sense that it has a constructive proof of existence. We characterize this solution for simple benchmark games under replicator dynamics, arguably the best known evolutionary dynamics in game theory. For (weighted) potential games, the new concept coincides with the fixpoints/equilibria of the dynamics. However, in (variants of) zero-sum games with fully mixed (i.e., interior) Nash equilibria, it covers the whole state space, as the dynamics satisfy specific information theoretic constants of motion. We discuss numerous novel computational, as well as structural, combinatorial questions raised by this chain recurrence conception of games.
more »
« less
- Award ID(s):
- 1763970
- PAR ID:
- 10094286
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 20
- Issue:
- 10
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 782
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report on the formalization in Ssreflect/Coq of a number of concepts and results from algorithmic game theory, including potential games, smooth games, solution concepts such as Pure and Mixed Nash Equilibria, Coarse Correlated Equilibria, epsilon-approximate equilibria, and behavioral models of games such as best-response dynamics. We apply the formalization to prove Price of Stability bounds for, and convergence under best-response dynamics of, the Atomic Routing game, which has applications in computer networking. Our second application proves that Affine Congestion games are (5/3, 1/3)-smooth, and therefore have Price of Anarchy 5/2. Our formalization is available online.more » « less
-
The study of linear-quadratic stochastic differential games on directed networks was initiated in Feng, Fouque & Ichiba [7]. In that work, the game on a directed chain with finite or infinite players was defined as well as the game on a deterministic directed tree, and their Nash equilibria were computed. The current work continues the analysis by first developing a random directed chain structure by assuming the interaction between every two neighbors is random. We solve explicitly for an open-loop Nash equilibrium for the system and we find that the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain introduced in [7]. The discussion about stochastic differential games is extended to a random two-sided directed chain and a random directed tree structure.more » « less
-
null (Ed.)The study of linear-quadratic stochastic differential games on directed networks was initiated in Feng, Fouque & Ichiba [7]. In that work, the game on a directed chain with finite or infinite players was defined as well as the game on a deterministic directed tree, and their Nash equilibria were computed. The current work continues the analysis by first developing a random directed chain structure by assuming the interaction between every two neighbors is random. We solve explicitly for an open-loop Nash equilibrium for the system and we find that the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain introduced in [7]. The discussion about stochastic differential games is extended to a random two-sided directed chain and a random directed tree structure.more » « less
-
Recent developments in domains such as non-local games, quantum interactive proofs, and quantum generative adversarial networks have renewed interest in quantum game theory and, specifically, quantum zero-sum games. Central to classical game theory is the efficient algorithmic computation of Nash equilibria, which represent optimal strategies for both players. In 2008, Jain and Watrous proposed the first classical algorithm for computing equilibria in quantum zerosum games using the Matrix Multiplicative Weight Updates (MMWU) method to achieve a convergence rate of O(d/ε2) iterations to ε-Nash equilibria in the 4d-dimensional spectraplex. In this work, we propose a hierarchy of quantum optimization algorithms that generalize MMWU via an extra-gradient mechanism. Notably, within this proposed hierarchy, we introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as O(d/ε) iterations to ε-Nash equilibria. This quadratic speed-up relative to Jain and Watrous’ original algorithm sets a new benchmark for computing ε-Nash equilibria in quantum zero-sum games.more » « less