skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brønsted acid and Pd–PHOX dual-catalysed enantioselective addition of activated C-pronucleophiles to internal dienes
We describe the development of Pd–PHOX-catalysed enantioselective couplings of internal dienes with malononitrile and other activated C-pronucleophiles. Reactions are dramatically accelerated by the addition of Et 3 N·HBAr F 4 as a Brønsted acid co-catalyst, enabling a suite of products bearing a variety of alkyl substituents at the stereogenic carbon to be prepared. A series of mechanism-oriented experiments reveal key aspects of the catalytic cycle and the importance of the non-coordinating BAr F 4 counterion in not only promoting reactions of internal dienes but also additions of previously unreactive nucleophiles towards terminal dienes.  more » « less
Award ID(s):
1800012
PAR ID:
10094365
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Science
Volume:
10
Issue:
19
ISSN:
2041-6520
Page Range / eLocation ID:
5176 to 5182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carreira, E. M.; Schoenebeck, F. (Ed.)
    Ketones are among the most widely used intermediates in organic synthesis and their synthesis from inexpensive feedstocks could be quite impactful. Regio- and enantioselective hydroacylation reactions of dienes provide facile entry into useful ketone-bearing chiral motifs with an additional latent functionality (alkene) suitable for further elaboration. Three classes of dienes, 2- or 4-monosubstituted and 2,4-disubstitued 1,3-dienes undergo cobalt(I)-catalyzed regio- and enantioselective hydroacylation giving products with high enantiomeric ratios (er). These reactions are highly dependent on the ligands, and we have identified the most useful ligands and reaction conditions for each class of dienes. 2-Substituted and 2,4-disubstituted dienes predominantly undergo 1,2-addition, whereas 4-substituted terminal dienes give highly enantioselective 4,1- or 4,3-hydroacylation depending on the aldehyde, aliphatic aldehydes giving 4,1-addition and aromatic aldehydes giving 4,3-addition. Included among the substrates are feedstock dienes isoprene ($1.4 /kg) and myrcene ($129/kg) and several common aldehydes. We propose an oxidative dimerization mechanism that involves a Co(I)/Co(III) redox cycle that appears to be initiated by a cationic Co(I) intermediate. Studies of reactions using isolated neutral and cationic Co(I) complexes confirm the critical role of the cationic intermediates in these reactions. Enantioselective 1,2-hydroacylation of 2-trimethylsiloxy-1,3-diene reveals a hitherto undisclosed route to chiral siloxy-protected aldols. Finally, facile syntheses of the anti-inflammatory drug (S)-Flobufen (2 steps, 92% yield, >99:1 er) and the food additive (S)-Dihydrotagetone (1 step, 83% yield; 96:4 er) from isoprene illustrate the power of this method for the preparation of commercially relevant compounds. 
    more » « less
  2. Asymmetric synthesis of substituted 1,4 cyclohexadienes and cyclobutenes has received great attention in recent years. Strategies such as base metal catalyzed cycloaddition bypass the need of harsh reaction conditions which are often required for synthesis of such motifs. These strategies using base-metals as catalysts are also valuable in constructing substituted cyclic motifs from readily available and inexpensive materials such as dienes and alkynes. Such reactions can be cost effective and environmentally friendly. In past decade, low valent cobalt has shown promising reactivity in forming new C-C and C-X (e. g., X= Si, B, N) bonds in high stereoselectivity. Through our studies, we found that cationic cobalt(I) complexes can catalyze intermolecular cycloaddition reactions of alkyne and 1,3-dienes in regio-and enantioselective manner. We also discovered that the involvement of 4-pi electrons or 2-pi electrons of 1,3-dienes can be controlled by the judicious choice of ligands employed on cobalt leading to [4+2] and [2+2] cycloaddition products respectively in high regio- and stereoselectivity. This excellent selectivity complimented with moderate to good yields provided us with broadly applicable protocol for synthesis of diversely substituted enantiopure cyclic motifs with enantiomeric excesses upto 99%. The scope of this method has been expanded over simple aliphatic and aromatic 1,3-dienes and alkynes bearing various functional groups. The methodical development of this transformation along with the ligand effects and possible mechanisms will be discussed in detail. 
    more » « less
  3. Asymmetric synthesis of substituted 1,4 cyclohexadienes and cyclobutenes has received great attention in recent years. Strategies such as base metal catalyzed cycloaddition bypass the need of harsh reaction conditions which are often required for synthesis of such motifs. These strategies using base-metals as catalysts are also valuable in constructing substituted cyclic motifs from readily available and inexpensive materials such as dienes and alkynes. Such reactions can be cost effective and environmentally friendly. In past decade, low valent cobalt has shown promising reactivity in forming new C-C and C-X (e. g., X= Si, B, N) bonds in high stereoselectivity. Through our studies, we found that cationic cobalt(I) complexes can catalyze intermolecular cycloaddition reactions of alkyne and 1,3-dienes in regio-and enantioselective manner. We also discovered that the involvement of 4 pi electrons or 2 pi electrons of 1,3-dienes can be controlled by the judicious choice of ligands employed on cobalt leading to [4+2] and [2+2] cycloaddition products respectively in high regio- and stereoselectivity. This excellent selectivity complimented with moderate to good yields provided us with broadly applicable protocol for synthesis of diversely substituted enantiopure cyclic motifs with enantiomeric excesses upto 99%. The scope of this method has been expanded over simple aliphatic and aromatic 1,3-dienes and alkynes bearing various functional groups. The methodical development of this transformation along with the ligand effects and possible mechanisms will be discussed in detail. 
    more » « less
  4. Abstract A catalytic method for the site‐selective and enantioselective synthesis of functionalized arenes by the intermolecular hydroarylation of terminal and internal 1,3‐dienes with aryl pinacolato boronates is reported. The reactions are promoted by 5.0 mol % of a readily available monodentate phosphoramidite‐Ni complex in ethanol, affording a variety of enantioenriched products in up to 96 % yield and 99:1 er. Mechanistic studies indicate that Ni–allyl formation is irreversible and related to the nature of the arylboronate. 
    more » « less
  5. A visible light-mediated, I2-catalyzed intermolecular transformation of alkenes, conjugated dienes, styrenes and alkynes to isooxazoline and isoxazole motifs with a-nitrocarbonyls and analogs is reported. The reaction is also applicable to 1,1-disubstituted terminal, 1,2-disubstituted internal and trisubstituted alkenes, and tolerates a range of functional groups including epoxides, heterocycles, phosphates, free alcohols and thiocyanates. Mechanistic studies reveal that a-nitrocarbonyls are first converted to -carbonyl radicals followed by their conversion to acyl nitrile oxides, which subsequently undergo [3 + 2] dipolar cycloaddition reactions with the unsaturated molecules. 
    more » « less