skip to main content


Title: SMA1, a homolog of the splicing factor Prp28, has a multifaceted role in miRNA biogenesis in Arabidopsis
MicroRNAs (miRNAs) are a class of small non-coding RNAs that repress gene expression. In plants, the RNase III enzyme Dicer-like (DCL1) processes primary miRNAs (pri-miRNAs) into miRNAs. Here, we show that SMALL1 (SMA1), a homolog of the DEAD-box pre-mRNA splicing factor Prp28, plays essential roles in miRNA biogenesis in Arabidopsis. A hypomorphic sma1-1 mutation causes growth defects and reduces miRNA accumulation correlated with increased target transcript levels. SMA1 interacts with the DCL1 complex and positively influences pri-miRNA processing. Moreover, SMA1 binds the promoter region of genes encoding pri-miRNAs (MIRs) and is required for MIR transcription. Furthermore, SMA1 also enhances the abundance of the DCL1 protein levels through promoting the splicing of the DCL1 pre-mRNAs. Collectively, our data provide new insights into the function of SMA1/Prp28 in regulating miRNA abundance in plants.  more » « less
Award ID(s):
1557417
NSF-PAR ID:
10094381
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nucleic acids research
Volume:
46
Issue:
17
ISSN:
1362-4962
Page Range / eLocation ID:
9148–9159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    MicroRNAs (miRNAs) are essential regulators of gene expression in metazoans and plants. In plants, most miRNAs are generated from primary miRNA transcripts (pri‐miRNAs), which are processed by the Dicer‐like 1 (DCL1) complex along with accessory proteins.

    Serrate‐Associated Protein 1 (SEAP1), a conserved splicing‐related protein, has been studied in human and yeast. However, the functions of SEAP1 in plants remain elusive.

    Lack ofSEAP1results in embryo lethality and knockdown ofSEAP1by an artificial miRNA (amiRSEAP1) causes pleiotropic developmental defects and reduction in miRNA accumulation. SEAP1 associates with the DCL1 complex, and may promote the interaction of the DCL1 complexes with pri‐miRNAs. SEAP1 also enhances pri‐miRNA accumulation, but does not affect pri‐miRNA transcription, suggesting it may indirectly or directly stabilize pri‐miRNAs. In addition, SEAP1 affects the splicing of some pri‐miRNAs and intron retention of messenger RNAs at global levels.

    Our findings uncover both conserved and novel functions of SEAP1 in plants. Besides the role as a splicing factor, SEPA1 may promote miRNA biogenesis by positively modulating pri‐miRNA splicing, processing and/or stability.

     
    more » « less
  2. Abstract

    MicroRNAs (miRNAs) are important regulators of genes expression. Their levels are precisely controlled through modulating the activity of the microprocesser complex (MC). Here, we report that JANUS, a homology of the conserved U2 snRNP assembly factor in yeast and human, is required for miRNA accumulation. JANUS associates with MC components Dicer-like 1 (DCL1) and SERRATE (SE) and directly binds the stem-loop of pri-miRNAs. In a hypomorphic janus mutant, the activity of DCL1, the numbers of MC, and the interaction of primary miRNA transcript (pri-miRNAs) with MC are reduced. These data suggest that JANUS promotes the assembly and activity of MC through its interaction with MC and/or pri-miRNAs. In addition, JANUS modulates the transcription of some pri-miRNAs as it binds the promoter of pri-miRNAs and facilitates Pol II occupancy of at their promoters. Moreover, global splicing defects are detected in janus. Taken together, our study reveals a novel role of a conserved splicing factor in miRNA biogenesis.

     
    more » « less
  3. Norwick, Katja (Ed.)
    Abstract In plants, miRNA production is orchestrated by a suite of proteins that control transcription of the pri-miRNA gene, post-transcriptional processing and nuclear export of the mature miRNA. Post-transcriptional processing of miRNAs is controlled by a pair of physically interacting proteins, hyponastic leaves 1 (HYL1) and Dicer-like 1 (DCL1). However, the evolutionary history and structural basis of the HYL1–DCL1 interaction is unknown. Here we use ancestral sequence reconstruction and functional characterization of ancestral HYL1 in vitro and in Arabidopsis thaliana to better understand the origin and evolution of the HYL1–DCL1 interaction and its impact on miRNA production and plant development. We found the ancestral plant HYL1 evolved high affinity for both double-stranded RNA (dsRNA) and its DCL1 partner before the divergence of mosses from seed plants (∼500 Ma), and these high-affinity interactions remained largely conserved throughout plant evolutionary history. Structural modeling and molecular binding experiments suggest that the second of two dsRNA-binding motifs (DSRMs) in HYL1 may interact tightly with the first of two C-terminal DCL1 DSRMs to mediate the HYL1–DCL1 physical interaction necessary for efficient miRNA production. Transgenic expression of the nearly 200 Ma-old ancestral flowering-plant HYL1 in A. thaliana was sufficient to rescue many key aspects of plant development disrupted by HYL1− knockout and restored near-native miRNA production, suggesting that the functional partnership of HYL1–DCL1 originated very early in and was strongly conserved throughout the evolutionary history of terrestrial plants. Overall, our results are consistent with a model in which miRNA-based gene regulation evolved as part of a conserved plant “developmental toolkit.” 
    more » « less
  4. DAWDLE (DDL) is a conserved forkhead-associated (FHA) domain-containing protein with essential roles in plant development and immunity. It acts in the biogenesis of microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs), which regulate gene expression at the transcriptional and/or post-transcriptional levels. However, the functional mechanism of DDL and its impact on exogenous siRNAs remain elusive. Here we report that DDL is required for the biogenesis of siRNAs derived from sense transgenes and inverted-repeat transgenes. Furthermore, we show that a mutation in the FHA domain of DDL disrupts the interaction of DDL with DICER-LIKE1 (DCL1), which is the enzyme that catalyzes miRNA maturation from primary miRNA transcripts (pri-miRNAs), resulting in impaired pri-miRNA processing. Moreover, we demonstrate that DDL interacts with DCL3, which is a DCL1 homolog responsible for siRNA production, and this interaction is crucial for optimal DCL3 activity. These results reveal that the interaction of DDL with DCLs is required for the biogenesis of miRNAs and siRNAs in Arabidopsis. 
    more » « less
  5. Abstract

    MicroRNAs (miRNAs) play a key role in regulating gene expression and their biogenesis is precisely controlled through modulating the activity of microprocessor. Here, we report that CWC15, a spliceosome-associated protein, acts as a positive regulator of miRNA biogenesis. CWC15 binds the promoters of genes encoding miRNAs (MIRs), promotes their activity, and increases the occupancy of DNA-dependent RNA polymerases at MIR promoters, suggesting that CWC15 positively regulates the transcription of primary miRNA transcripts (pri-miRNAs). In addition, CWC15 interacts with Serrate (SE) and HYL1, two key components of microprocessor, and is required for efficient pri-miRNA processing and the HYL1-pri-miRNA interaction. Moreover, CWC15 interacts with the 20 S proteasome and PRP4KA, facilitating SE phosphorylation by PRP4KA, and subsequent non-functional SE degradation by the 20 S proteasome. These data reveal that CWC15 ensures optimal miRNA biogenesis by maintaining proper SE levels and by modulating pri-miRNA levels. Taken together, this study uncovers the role of a conserved splicing-related protein in miRNA biogenesis.

     
    more » « less