skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automatic Creation of Fine-Grained Vulnerable Windows System for Penetration Testing Education
In the face of the increasing needs of cybersecurity professionals from US public and private sectors, many universities have created various cybersecurity education programs. Penetration testing, as a critical component in cybersecurity training, often requires setting up virtual machines (VM) with various vulnerabilities. However, it is usually time-consuming and technically difficult to fine tune vulnerabilities in VM systems. In this paper, we present an automatic security patch removal tool that can fine tune various Windows VM systems to precise levels of vulnerabilities, and easily employed by students and educators alike. This tool can create virtual machines that simulate different security states in the Windows operating system timeline and gives a more realistic view of the every-changing state of cybersecurity to the students pursuing an education in the field.  more » « less
Award ID(s):
1723587 1802701
PAR ID:
10094478
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE Annual Conference and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents an innovative approach to DevOps security education, addressing the dynamic landscape of cybersecurity threats. We propose a student-centered learning methodology by developing comprehensive hands-on learning modules. Specifically, we introduce labware modules designed to automate static security analysis, empowering learners to identify known vulnerabilities efficiently. These modules offer a structured learning experience with pre-lab, hands-on, and post-lab sections, guiding students through DevOps concepts and security challenges. In this paper, we introduce hands-on learning modules that familiarize students with recognizing known security flaws through the application of Git Hooks. Through practical exercises with real-world code examples containing security flaws, students gain proficiency in detecting vulnerabilities using relevant tools. Initial evaluations conducted across educational institutions indicate that these hands-on modules foster student interest in software security and cybersecurity and equip them with practical skills to address DevOps security vulnerabilities. 
    more » « less
  2. This paper presents an innovative approach to DevOps security education, addressing the dynamic landscape of cybersecurity threats. We propose a student-centered learning methodology by developing comprehensive hands-on learning modules. Specifically, we introduce labware modules designed to automate static security analysis, empowering learners to identify known vulnerabilities efficiently. These modules offer a structured learning experience with pre-lab, hands-on, and post-lab sections, guiding students through DevOps concepts and security challenges. In this paper, we introduce hands-on learning modules that familiarize students with recognizing known security flaws through the application of Git Hooks. Through practical exercises with real-world code examples containing security flaws, students gain proficiency in detecting vulnerabilities using relevant tools. Initial evaluations conducted across educational institutions indicate that these hands-on modules foster student interest in software security and cybersecurity and equip them with practical skills to address DevOps security vulnerabilities. 
    more » « less
  3. We present CyBERT, a domain-specific Bidirectional Encoder Representations from Transformers (BERT) model, fine-tuned with a large corpus of textual cybersecurity data. State-of-the-art natural language models that can process dense, fine-grained textual threat, attack, and vulnerability information can provide numerous benefits to the cybersecurity community. The primary contribution of this paper is providing the security community with an initial fine-tuned BERT model that can perform a variety of cybersecurity-specific downstream tasks with high accuracy and efficient use of resources. We create a cybersecurity corpus from open-source unstructured and semi-unstructured Cyber Threat Intelligence (CTI) data and use it to fine-tune a base BERT model with Masked Language Modeling (MLM) to recognize specialized cybersecurity entities. We evaluate the model using various downstream tasks that can benefit modern Security Operations Centers (SOCs). The finetuned CyBERT model outperforms the base BERT model in the domain-specific MLM evaluation. We also provide use-cases of CyBERT application in cybersecurity based downstream tasks. 
    more » « less
  4. An increasing number of Trusted Execution Environment (TEE) is adopting to a variety of commercial products for protecting data security on the cloud. However, TEEs are still exposed to various side-channel vulnerabilities, such as execution order-based, timing-based, and power-based vulnerabilities. While recent hardware is applying various techniques to mitigate order-based and timing-based side-channel vulnerabilities, power-based side-channel attacks remain a concern of hardware security, especially for the confidential computing settings where the server machines are beyond the control of cloud users. In this paper, we present PWRLEAK, an attack framework that exploits AMD’s power reporting interfaces to build power side-channel attacks against AMD Secure Encrypted Virtualization (SEV)-protected VM. We design and implement the attack framework with three general steps: (1) identify the instruction running inside AMD SEV, (2) apply a power interpolator to amplify power consumption, including an emulation-based interpolator for analyzing purposes and a moregeneral interrupt-based interpolator, and (3) infer secrets with various analysis approaches. A case study of using the emulation-based interpolator to infer the whole JPEG images processed by libjpeg demonstrates its ability to help analyze power consumption inside SEV VM. Our end-to-end attacks against Intel’s Integrated Performance Primitives (Intel IPP) library indicates that PWRLEAK can be exploited to infer RSA private keys with over 80% accuracy using the interrupt based interpolator. 
    more » « less
  5. Recent advances in Artificial Intelligence (AI) have brought society closer to the long-held dream of creating machines to help with both common and complex tasks and functions. From recommending movies to detecting disease in its earliest stages, AI has become an aspect of daily life many people accept without scrutiny. Despite its functionality and promise, AI has inherent security risks that users should understand and programmers must be trained to address. The ICE (integrity, confidentiality, and equity) cybersecurity labs developed by a team of cybersecurity researchers addresses these vulnerabilities to AI models through a series of hands-on, inquiry-based labs. Through experimenting with and manipulating data models, students can experience firsthand how adversarial samples and bias can degrade the integrity, confidentiality, and equity of deep learning neural networks, as well as implement security measures to mitigate these vulnerabilities. This article addresses the pedagogical approach underpinning the ICE labs, and discusses both sample activities and technological considerations for teachers who want to implement these labs with their students. 
    more » « less