Since the introduction of the original BERT (i.e., BASE BERT), researchers have developed various customized BERT models with improved performance for specific domains and tasks by exploiting the benefits of transfer learning. Due to the nature of mathematical texts, which often use domain specific vocabulary along with equations and math symbols, we posit that the development of a new BERT model for mathematics would be useful for many mathematical downstream tasks. In this resource paper, we introduce our multi-institutional effort (i.e., two learning platforms and three academic institutions in the US) toward this need: MathBERT, a model created by pre-training the BASE BERT model on a large mathematical corpus ranging from pre-kindergarten (pre-k), to high-school, to college graduate level mathematical content. In addition, we select three general NLP tasks that are often used in mathematics education: prediction of knowledge component, auto-grading open-ended Q&A, and knowledge tracing, to demonstrate the superiority of MathBERT over BASE BERT. Our experiments show that MathBERT outperforms prior best methods by 1.2-22% and BASE BERT by 2-8% on these tasks. In addition, we build a mathematics specific vocabulary ‘mathVocab’ to train with MathBERT. We discover that MathBERT pre-trained with ‘mathVocab’ outperforms MathBERT trained with the BASE BERT vocabulary (i.e., ‘origVocab’). MathBERT is currently being adopted at the participated leaning platforms: Stride, Inc, a commercial educational resource provider, and ASSISTments.org, a free online educational platform. We release MathBERT for public usage at: https://github.com/tbs17/MathBERT. 
                        more » 
                        « less   
                    
                            
                            CyBERT: Contextualized Embeddings for the Cybersecurity Domain
                        
                    
    
            We present CyBERT, a domain-specific Bidirectional Encoder Representations from Transformers (BERT) model, fine-tuned with a large corpus of textual cybersecurity data. State-of-the-art natural language models that can process dense, fine-grained textual threat, attack, and vulnerability information can provide numerous benefits to the cybersecurity community. The primary contribution of this paper is providing the security community with an initial fine-tuned BERT model that can perform a variety of cybersecurity-specific downstream tasks with high accuracy and efficient use of resources. We create a cybersecurity corpus from open-source unstructured and semi-unstructured Cyber Threat Intelligence (CTI) data and use it to fine-tune a base BERT model with Masked Language Modeling (MLM) to recognize specialized cybersecurity entities. We evaluate the model using various downstream tasks that can benefit modern Security Operations Centers (SOCs). The finetuned CyBERT model outperforms the base BERT model in the domain-specific MLM evaluation. We also provide use-cases of CyBERT application in cybersecurity based downstream tasks. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10323463
- Date Published:
- Journal Name:
- IEEE International Conference on Big Data
- Page Range / eLocation ID:
- 3334 to 3342
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Language model (LM) pretraining can learn various knowledge from text corpora, helping downstream tasks. However, existing methods such as BERT model a single document, and do not capture dependencies or knowledge that span across documents. In this work, we propose LinkBERT, an LM pretraining method that leverages links between documents, e.g., hyperlinks. Given a text corpus, we view it as a graph of documents and create LM inputs by placing linked documents in the same context. We then pretrain the LM with two joint self-supervised objectives: masked language modeling and our new proposal, document relation prediction. We show that LinkBERT outperforms BERT on various downstream tasks across two domains: the general domain (pretrained on Wikipedia with hyperlinks) and biomedical domain (pretrained on PubMed with citation links). LinkBERT is especially effective for multi-hop reasoning and few-shot QA (+5% absolute improvement on HotpotQA and TriviaQA), and our biomedical LinkBERT sets new states of the art on various BioNLP tasks (+7% on BioASQ and USMLE).more » « less
- 
            This paper focuses on learning domain oriented language models driven by end tasks, which aims to combine the worlds of both general-purpose language models (such as ELMo and BERT) and domain-specific language understanding. We propose DomBERT, an extension of BERT to learn from both in-domain corpus and relevant domain corpora. This helps in learning domain language models with low-resources. Experiments are conducted on an assortment of tasks in aspect based sentiment analysis (ABSA), demonstrating promising results.more » « less
- 
            Language model approaches have recently been integrated into binary analysis tasks, such as function similarity detection and function signature recovery. These models typically employ a two-stage training process: pre-training via Masked Language Modeling (MLM) on machine code and fine-tuning for specific tasks. While MLM helps to understand binary code struc- tures, it ignores essential code characteristics, including control and data flow, which negatively affect model generalization. Recent work leverages domain-specific features (e.g., control flow graphs and dynamic execution traces) in transformer-based approaches to improve binary code semantic understanding. However, this approach involves complex feature engineering, a cumbersome and time-consuming process that can introduce predictive uncertainty when dealing with stripped or obfuscated code, leading to a performance drop. In this paper, we introduce PROTST, a novel transformer-based methodology for binary code embedding. PROTST employs a hierarchical training process based on a unique tree-like structure, where knowledge progressively flows from fundamental tasks at the root to more specialized tasks at the leaves. This progressive teacher-student paradigm allows the model to build upon previously learned knowledge, resulting in high-quality embeddings that can be effectively leveraged for diverse downstream binary analysis tasks. The effectiveness of PROTST is evaluated in seven binary analysis tasks, and the results show that PROTST yields an average validation score (F1, MRR, and Recall@1) improvement of 14.8% compared to traditional two-stage training and an average validation score of 10.7% compared to multimodal two-stage frameworks.more » « less
- 
            Cyber Threat Intelligence (CTI) is information describing threat vectors, vulnerabilities, and attacks and is often used as training data for AI-based cyber defense systems such as Cybersecurity Knowledge Graphs (CKG). There is a strong need to develop community-accessible datasets to train existing AI-based cybersecurity pipelines to efficiently and accurately extract meaningful insights from CTI. We have created an initial unstructured CTI corpus from a variety of open sources that we are using to train and test cybersecurity entity models using the spaCy framework and exploring self-learning methods to automatically recognize cybersecurity entities. We also describe methods to apply cybersecurity domain entity linking with existing world knowledge from Wikidata. Our future work will survey and test spaCy NLP tools, and create methods for continuous integration of new information extracted from text.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    