Comparison of brittle- and viscous creep in quartzites: Implications for semi-brittle flow of rocks
- Award ID(s):
- 1547492
- PAR ID:
- 10094635
- Date Published:
- Journal Name:
- Journal of Structural Geology
- Volume:
- 113
- Issue:
- C
- ISSN:
- 0191-8141
- Page Range / eLocation ID:
- 90 to 99
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Crack initiation emerges due to a combination of elasticity, plasticity, and disorder, and it displays strong dependence on the material’s microstructural details. The characterization of the structural uncertainty in the original microstructure is typically empirical and systematic characterization protocols are lacking. In this paper, we propose an investigational tool in the form of the curvature an ellipsoidal notch: As the radius of curvature at the notch increases, there is a dynamic phase transition from notch-induced crack initiation to bulk-disorder crack nucleation. The notch length scale associated with this transition may provide an additional characteristic of the original material microstructure. We investigate brittle but elastoplastic metals with coarse-grained, microstructural disorder that could originate in a material’s manufacturing process, such as alloying. We perform extensive and realistic simulations using a phase-field approach coupled to crystal plasticity. The microstructural disorder and notch width are systematically varied. We identify this transition for various disorder strengths in terms of the damage evolution. We identify detectable precursors to crack initiation that we quantify in terms of the expected stress drops during mode I fracture loading. Finally, we discuss ways to observe and analyze this brittle to quasi-brittle transition in experiments.more » « less
-
Abstract The onset of brittle failure in rocks includes dilatancy and strain localization. To better understand this nucleation process, we analyze the evolution of the local three‐dimensional strain tensor using X‐ray tomograms acquired during triaxial compression experiments on granite and sandstone. The onset of the localization of the compaction, dilation, and shear strain occurs when ∼65% of the rock volume experiences dilation. Tracking the locations of the high strains throughout loading suggests that the deformation that occurs early in loading influences the location of the system‐sized fracture network that produces macroscopic failure. This influence is larger in the sandstone experiments than the granite experiments, likely due to the microstructure of the sandstone. These results have important implications for detecting precursors to catastrophic failure.more » « less
An official website of the United States government

