Pre-trained deep neural networks (DNNs) are being widely deployed by industry for making business decisions and to serve users; however, a major problem is model decay, where the DNN's predictions become more erroneous over time, resulting in revenue loss or unhappy users. To mitigate model decay, DNNs are retrained from scratch using old and new data. This is computationally expensive, so retraining happens only once performance significantly decreases. Here, we study how continual learning (CL) could potentially overcome model decay in large pre-trained DNNs and greatly reduce computational costs for keeping DNNs up-to-date. We identify the "stability gap" as a major obstacle in our setting. The stability gap refers to a phenomenon where learning new data causes large drops in performance for past tasks before CL mitigation methods eventually compensate for this drop. We test two hypotheses to investigate the factors influencing the stability gap and identify a method that vastly reduces this gap. In large-scale experiments for both easy and hard CL distributions (e.g., class incremental learning), we demonstrate that our method reduces the stability gap and greatly increases computational efficiency. Our work aligns CL with the goals of the production setting, where CL is needed for many applications.
more »
« less
Performance Evaluation of a Differentially-private Neural Network for Cloud Computing
Due to the large computational cost of data classification using deep learning, resource-limited devices, e.g., smart phones, PCs, etc., offload their classification tasks to a cloud server, which offers extensive hardware resources. Unfortunately, since the cloud is an untrusted third-party, users may be reluctant to share their private data with the cloud for data classification. Differential privacy has been proposed as a way of securely classifying data at the cloud using deep learning. In this approach, users conceal their data before uploading it to the cloud using a local obfuscation deep learning model, which is based on a data classification model hosted by the cloud. However, as the obfuscation model assumes that the pre-trained model at the cloud is static, it leads to significant performance degradation under realistic classification models that are constantly being updated. In this paper, we investigate the performance of differentially-private data classification under a dynamic pre-trained model, and a constant obfuscation model. We find that the classification performance decreases as the pre-trained model evolves. We then investigate the classification performance under an obfuscation model that is updated alongside the pre-trained model. We find that with a modest computational effort the obfuscation model can be updated to significantly improve the classification performance. under a dynamic pre-trained model.
more »
« less
- Award ID(s):
- 1659396
- PAR ID:
- 10094707
- Date Published:
- Journal Name:
- 2018 IEEE International Conference on Big Data (Big Data)
- Page Range / eLocation ID:
- 2542 to 2545
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data augmentation techniques, such as simple image transformations and combinations, are highly effective at improving the generalization of computer vision models, especially when training data is limited. However, such techniques are fundamentally incompatible with differentially private learning approaches, due to the latter's built-in assumption that each training image's contribution to the learned model is bounded. In this paper, we investigate why naive applications of multi-sample data augmentation techniques, such as mixup, fail to achieve good performance and propose two novel data augmentation techniques specifically designed for the constraints of differentially private learning. Our first technique, DP-Mix_Self, achieves SoTA classification performance across a range of datasets and settings by performing mixup on self-augmented data. Our second technique, DP-Mix_Diff, further improves performance by incorporating synthetic data from a pre-trained diffusion model into the mixup process.more » « less
-
Data augmentation techniques, such as image transformations and combinations, are highly effective at improving the generalization of computer vision models, especially when training data is limited. However, such techniques are fundamentally incompatible with differentially private learning approaches, due to the latter’s built-in assumption that each training image’s contribution to the learned model is bounded. In this paper, we investigate why naive applications of multi-sample data augmentation techniques, such as mixup, fail to achieve good performance and propose two novel data augmentation techniques specifically designed for the constraints of differentially private learning. Our first technique, DP-MIX_SELF, achieves SoTA classification performance across a range of datasets and settings by performing mixup on self-augmented data. Our second technique, DP-MIX_DIFF, further improves performance by incorporating synthetic data from a pre-trained diffusion model into the mixup process.more » « less
-
Ayahiko Niimi, Future University-Hakodate (Ed.)Traditional Network Intrusion Detection Systems (NIDS) encounter difficulties due to the exponential growth of network traffic data and modern attacks' requirements. This paper presents a novel network intrusion classification framework using transfer learning from the VGG-16 pre-trained model. The framework extracts feature leveraging pre-trained weights trained on the ImageNet dataset in the initial step, and finally, applies a deep neural network to the extracted features for intrusion classification. We applied the presented framework on NSL-KDD, a benchmark dataset for network intrusion, to evaluate the proposed framework's performance. We also implemented other pre-trained models such as VGG19, MobileNet, ResNet-50, and Inception V3 to evaluate and compare performance. This paper also displays both binary classification (normal vs. attack) and multi-class classification (classifying types of attacks) for network intrusion detection. The experimental results show that feature extraction using VGG-16 outperforms other pre-trained models producing better accuracy, precision, recall, and false alarm rates.more » « less
-
Deploying deep learning on Synthetic Aperture Radar (SAR) data is becoming more common for mapping purposes. One such case is sea ice, which is highly dynamic and rapidly changes as a result of the combined effect of wind, temperature, and ocean currents. Therefore, frequent mapping of sea ice is necessary to ensure safe marine navigation. However, there is a general shortage of expert-labeled data to train deep learning algorithms. Fine-tuning a pre-trained model on SAR imagery is a potential solution. In this paper, we compare the performance of deep learning models trained from scratch using randomly initialized weights against pre-trained models that we fine-tune for this purpose. Our results show that pre-trained models lead to better results, especially on test samples from the melt season.more » « less
An official website of the United States government

