skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly heterogeneous depleted mantle recorded in the lower oceanic crust
The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust.  more » « less
Award ID(s):
1834367
PAR ID:
10094759
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Geoscience
ISSN:
1752-0894
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. N/A (Ed.)
    Long-lived radiogenic isotopes of abyssal peridotites, residues of MORB extraction, show that the asthenosphere is intrinsically heterogeneous, which is inherited from ancient melting events and crustal recycling during Earth's history. Yet, Mid Ocean Ridge Basalts (MORB) have a rather uniform average composition, suggesting that the variability of their mantle source is concealed during their ascent. Here we document that mantle heterogeneity is exceptionally well preserved in high permeability mantle conduits from the Lanzo South mantle massif, Western Italian Alps. Nd-Hf-Os isotopes of decametre-scale replacive bodies provide evidence for the existence of two generations of mantle channels. The first generation consists of dunites concordant to the main foliation of host peridotites. The replacive dunites include clinopyroxene with MORB-like incompatible element signature and initial (160 Ma) ƐNd and ƐHf ranging from +4 to +7 and from +10 to +15, respectively. The second generation, made up of pyroxene-poor harzburgites discordant to the main foliation, is geochemically depleted in incompatible elements and its clinopyroxene displays highly radiogenic Hf isotopes (initial ƐHf up to +202). The mantle channel heterogeneity is confirmed by Resingle bondOs isotopes and platinum-groups elements. The MORB-type dunites have high Pt, Pd and, locally, Re, and have 187Os/188Os ratios similar to the host peridotite (0.122–0.128). On the other hand, the depleted bodies have lower Pt, Pd and Re, and 187Os/188Os ratios ranging from those of host peridotites (0.124) to highly unradiogenic values (0.118) in the most refractory sample. The preserved heterogeneity in trace elements, PGE, and Nd-Hf-Os isotopes highlights infiltration of melts from a highly heterogeneous mantle, still partially preserved within these mantle bodies. If applied to present-day Mid Ocean Ridges, our model indicates that the isotopic variability of melts migrating through replacive mantle conduits is by far larger than magmas erupted on the seafloor, which implies that diverse mantle components are mainly delivered and homogenised above the crust-mantle boundary. 
    more » « less
  2. Abstract The composition of Earth's mantle, continental crust, and oceanic crust continuously evolve in response to the dynamic forces of plate tectonics and mantle convection. The classical view of terrestrial geochemistry, where mid‐ocean ridges sample mantle previously depleted by continental crust extraction, broadly explains the composition of the oceanic and continental crust but is potentially inconsistent with observed slab subduction to the lower mantle and oceanic crust accumulation in the deep mantle. We develop a box model to explore the key processes controlling crust‐mantle chemical evolution. The model mimics behaviors observed in thermochemical convection simulations including subducted oceanic crust separating and accumulating in the deep mantle. We demonstrate that oceanic crust accumulation strongly depletes the mantle independently of continental crust extraction. Slab stalling depths and continental crust recycling rates also affect the extent and location of mantle depletion. We constrain model regimes that reproduce oceanic and continental crust compositions using Markov chain Monte Carlo sampling. Some regimes deplete the lower mantle more than the upper mantle, contradicting the assumption of a more enriched lower mantle. All regimes require oceanic crust accumulation in the mantle. Though a small fraction of the mantle mass, accumulated oceanic crust can sequester trace element budgets exceeding the continental crust, depleting the mantle more than continental crust extraction alone. Oceanic crust accumulation may therefore be as important as continental crust extraction in depleting the mantle, contradicting the paradigmatic complementarity of depleted mantle and continental crust. Instead, depleted mantle is complementary to continental crust plus sequestered oceanic crust. 
    more » « less
  3. Abstract The plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle. 
    more » « less
  4. Abstract The Icelandic hotspot has erupted basaltic magma with the highest mantle‐derived3He/4He over a period spanning much of the Cenozoic, from the early‐Cenozoic Baffin Island‐West Greenland flood basalt province (49.8RA), to mid‐Miocene lavas in northwest Iceland (40.2 to 47.5RA), to Pleistocene lavas in Iceland's neovolcanic zone (34.3RA). The Baffin Island lavas transited through and potentially assimilated variable amounts of Precambrian continental basement. We use geochemical indicators sensitive to continental crust assimilation (Nb/Th, Ce/Pb, MgO) to identify the least crustally contaminated lavas. Four lavas, identified as “least crustally contaminated,” have high MgO (>15 wt.%), and Nb/Th and Ce/Pb that fall within the mantle range (Nb/Th = 15.6 ± 2.6, Ce/Pb = 24.3 ± 4.3). These lavas have87Sr/86Sr = 0.703008–0.703021,143Nd/144Nd = 0.513094–0.513128,176Hf/177Hf = 0.283265–0.283284,206Pb/204Pb = 17.7560–17.9375,3He/4He up to 39.9RA, and mantle‐like δ18O of 5.03–5.21‰. The radiogenic isotopic compositions of the least crustally contaminated lavas are more geochemically depleted than Iceland high‐3He/4He lavas, a shift that cannot be explained by continental crust assimilation in the Baffin suite. Thus, we argue for the presence oftwogeochemically distinct high‐3He/4He components within the Iceland plume. Additionally, the least crustally contaminated primary melts from Baffin Island‐West Greenland have higher mantle potential temperatures (1510 to 1630 °C) than Siqueiros mid‐ocean ridge basalts (1300 to 1410 °C), which attests to a hot, buoyant plume origin for early Iceland plume lavas. These observations support the contention that the geochemically heterogeneous high‐3He/4He domain is dense, located in the deep mantle, and sampled by only the hottest plumes. 
    more » « less
  5. This paper presents the first detailed geologic map of in situ lower ocean crust; the product of six surveys of Atlantis Bank on the SW Indian Ridge. This combined with major and trace element compositions of primary magmatic phases in 99 seafloor gabbros shows there are both significant vertical and ridge-parallel variations in crustal composition and thickness, but a continuity of the basic stratigraphy parallel to spreading. This stratigraphy is not that of magmatic sedimentation in a large crustal magma chamber. Instead, it is the product of dynamic accretion where the lower crust formed by episodic intrusion, large-scale upward migration of interstitial melt due to crystal mush compaction, and continuous tectonic extension accompanied by hyper- and sub-solidus, crystal-plastic deformation. Five crossings of the gabbro-peridotite contact along the transform wall show that massive mantle peridotite is intruded by cumulate residues of moderately to highly evolved magmas, few of which could be even close to equilibrium with a primary mantle magma. This contact then does not represent the crust-mantle boundary as envisaged in the ophiolite analog for ocean crust. The residues of the magmas parental to the shallow crust must also lie beneath the center of the complex. This, and the nearly complete absence of dunites in peridotites from the transform wall, shows that melt transport through the shallow lithosphere was largely restricted to the central region of the paleo-ridge segment. There is almost no evidence for a melt lens or high-level storage of primitive melt in the upper 1500 m of Atlantis Bank. Thus, the composition of associated mid-ocean ridge basalt appears largely controlled by fractional crystallization of primitive cumulates at depth, near or at the base of the crust, modified somewhat by melt-rock reaction during transport through the overlying cumulate pile to the seafloor. Inliers of the dike-gabbro transition show that the uppermost gabbros crystallized at depth and were then emplaced upward, as they cooled, into the zone of diking. ODP and IODP drilling along the center of the gabbro massif also found few primitive gabbros that could have been in equilibrium with the original overlying lavas. Evidence of large-scale upward, permeable transport of interstitial melt through the gabbros is ubiquitous. Thus, post-cumulus processes, including extensive reaction, dissolution, and re-precipitation within the cumulate pile have obscured nearly all evidence of earlier primitive origins. We suggest that many of the gabbros may have started as primitive cumulates but were hybridized and transformed by later, migrating melts to evolved compositions, even as they ascended to higher levels, while new primitive cumulates were emplaced near the base of the crust. Mass balance for a likely parental melt intruded from the mantle to form the crust, however, requires that such primitive cumulates must exist at depth beneath Atlantis Bank at the center of the magmatic complex. The Atlantis Bank Gabbro Massif accreted by direct magma intrusion into the lower crust, followed by upward diapiric flow, first as a crystal mush, then by solid-state, crystal-plastic deformation, and finally by detachment faulting to the sea floor. The strongly asymmetric spreading to the south, parallel to the transform, was due to fault capture, with the bounding faults on the northern rift valley wall cut off by the detachment fault, which extended across the zone of intrusion causing rapid migration of the plate boundary to the north. 
    more » « less