Hydrogen sulfide is a biologically important molecule and developing chemical tools that enable further investigations into the functions of H2S is essential. Fluorescent turn‐on H2S probes have been developed for use
- Award ID(s):
- 1708240
- NSF-PAR ID:
- 10094766
- Date Published:
- Journal Name:
- Journal of Materials Chemistry B
- Volume:
- 6
- Issue:
- 30
- ISSN:
- 2050-750X
- Page Range / eLocation ID:
- 4963 to 4971
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract in cellulo andin vivo , but the membrane permeability of these probes can lead to probe leakage and signal attenuation over time. Here we report a cell trappable fluorescent probe for H2S,CT‐MeRhoAz , which is based on a methylrhodolazide scaffold derivatized with an acetoxymethyl ester group. Prior to ester cleavage, theCT‐MeRhoAz probe generates a 2500‐fold turn‐on response to H2S, which is enhanced to a 3000‐fold response for the carboxylic acid form of the probe. Additionally, the probe is highly selective for H2S over other biologically relevant sulfur, oxygen, and nitrogen‐based analytes. Live cell imaging experiments confirmed the biocompatibility ofCT‐MeRhoAz and also that it is cell trappable, unlike the parentMeRhoAz scaffold. -
Abstract A general synthetic method creates a new class of covalently connected, self‐threaded, fluorescent molecular probes with figure‐eight topology, an encapsulated deep‐red fluorophore, and two peripheral peptide loops. The globular molecular shape and rigidified peptide loops enhance imaging performance by promoting water solubility, eliminating probe self‐aggregation, and increasing probe stability. Moreover, the peptide loops determine the affinity and selectivity for targets within complex biological samples such as cell culture, tissue histology slices, or living subjects. For example, a probe with cell‐penetrating peptide loops targets the surface of cell plasma membranes, whereas, a probe with bone‐targeting peptide loops selectively stains the skeleton within a living mouse. The unique combination of bright deep‐red fluorescence, high stability, and predictable peptide‐based targeting is ideal for photon intense fluorescence microscopy and biological imaging.
-
Abstract A general synthetic method creates a new class of covalently connected, self‐threaded, fluorescent molecular probes with figure‐eight topology, an encapsulated deep‐red fluorophore, and two peripheral peptide loops. The globular molecular shape and rigidified peptide loops enhance imaging performance by promoting water solubility, eliminating probe self‐aggregation, and increasing probe stability. Moreover, the peptide loops determine the affinity and selectivity for targets within complex biological samples such as cell culture, tissue histology slices, or living subjects. For example, a probe with cell‐penetrating peptide loops targets the surface of cell plasma membranes, whereas, a probe with bone‐targeting peptide loops selectively stains the skeleton within a living mouse. The unique combination of bright deep‐red fluorescence, high stability, and predictable peptide‐based targeting is ideal for photon intense fluorescence microscopy and biological imaging.
-
A new family of fluorescent thiophene and thienothiophene-containing squaraine dyes is described with tunable wavelengths that cover the absorption/emission range of 600–800 nm. The deep-red and near-infrared fluorescent compounds were easily prepared by simple synthesis and purification methods. Spectral studies showed that each squaraine was rapidly encapsulated by a tetralactam macrocycle, with nanomolar affinity in water, to produce a threaded supramolecular complex with high chemical stability, increased fluorescence quantum yield, and decreased fluorescence quenching upon dye self-aggregation. Energy transfer within the supramolecular complex permitted multiplex emission. That is, two separate dyes with fluorescence emission bands that match the popular Cy5 and Cy7 channels, could be simultaneously excited with a beam of 375 nm light. A broad range of practical applications is envisioned in healthcare diagnostics, microscopy, molecular imaging, and fluorescence-guided surgery.more » « less
-
Cells are physically contacting with each other. Direct and precise quantification of forces at cell–cell junctions is still challenging. Herein, we have developed a DNA-based ratiometric fluorescent probe, termed DNAMeter, to quantify intercellular tensile forces. These lipid-modified DNAMeters can spontaneously anchor onto live cell membranes. The DNAMeter consists of two self-assembled DNA hairpins of different force tolerance. Once the intercellular tension exceeds the force tolerance to unfold a DNA hairpin, a specific fluorescence signal will be activated, which enables the real-time imaging and quantification of tensile forces. Using E-cadherin-modified DNAMeter as an example, we have demonstrated an approach to quantify, at the molecular level, the magnitude and distribution of E-cadherin tension among epithelial cells. Compatible with readily accessible fluorescence microscopes, these easy-to-use DNA tension probes can be broadly used to quantify mechanotransduction in collective cell behaviors.more » « less