skip to main content


Title: Quantifying Tensile Forces at Cell–Cell Junctions with a DNA-based Fluorescent Probe
Cells are physically contacting with each other. Direct and precise quantification of forces at cell–cell junctions is still challenging. Herein, we have developed a DNA-based ratiometric fluorescent probe, termed DNAMeter, to quantify intercellular tensile forces. These lipid-modified DNAMeters can spontaneously anchor onto live cell membranes. The DNAMeter consists of two self-assembled DNA hairpins of different force tolerance. Once the intercellular tension exceeds the force tolerance to unfold a DNA hairpin, a specific fluorescence signal will be activated, which enables the real-time imaging and quantification of tensile forces. Using E-cadherin-modified DNAMeter as an example, we have demonstrated an approach to quantify, at the molecular level, the magnitude and distribution of E-cadherin tension among epithelial cells. Compatible with readily accessible fluorescence microscopes, these easy-to-use DNA tension probes can be broadly used to quantify mechanotransduction in collective cell behaviors.  more » « less
Award ID(s):
1662835
NSF-PAR ID:
10179907
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mechanical interactions between cells have been shown to play critical roles in regulating cell signaling and communications. However, the precise measurement of intercellular forces is still quite challenging, especially considering the complex environment at cell–cell junctions. In this study, we report a fluorescence lifetime‐based approach to image and quantify intercellular molecular tensions. Using this method, tensile forces among multiple ligand–receptor pairs can be measured simultaneously. We first validated our approach and developed lifetime measurement‐based DNA tension probes to image E‐cadherin‐mediated tension on epithelial cells. These probes were then further applied to quantify the correlations between E‐cadherin and N‐cadherin tensions during an epithelial–mesenchymal transition process. The modular design of these probes can potentially be used to study the mechanical features of various physiological and pathological processes.

     
    more » « less
  2. Abstract

    Mechanical interactions between cells have been shown to play critical roles in regulating cell signaling and communications. However, the precise measurement of intercellular forces is still quite challenging, especially considering the complex environment at cell–cell junctions. In this study, we report a fluorescence lifetime‐based approach to image and quantify intercellular molecular tensions. Using this method, tensile forces among multiple ligand–receptor pairs can be measured simultaneously. We first validated our approach and developed lifetime measurement‐based DNA tension probes to image E‐cadherin‐mediated tension on epithelial cells. These probes were then further applied to quantify the correlations between E‐cadherin and N‐cadherin tensions during an epithelial–mesenchymal transition process. The modular design of these probes can potentially be used to study the mechanical features of various physiological and pathological processes.

     
    more » « less
  3. null (Ed.)
    Cell adhesive force, exerting on the local matrix or neighboring cells, plays a critical role in regulating many cell functions and physiological processes. In the past four decades, significant efforts have been dedicated to cell adhesive force detection, visualization and quantification. A recent important methodological advancement in cell adhesive force visualization is to adopt force-to-fluorescence conversion instead of force-to-substrate strain conversion, thus greatly improving the sensitivity and resolution of force imaging. This review summarizes the recent development of force imaging techniques (collectively termed as cell adhesive force microscopy or CAFM here), with a particular focus on the improvement of CAFM’s spatial resolution and the biomaterial choices for constructing the tension sensors used in force visualization. This review also highlights the importance of DNA-based tension sensors in cell adhesive force imaging and the recent breakthrough in the development of super-resolution CAFM. 
    more » « less
  4. Abstract

    Podosomes are ubiquitous cellular structures important to diverse processes including cell invasion, migration, bone resorption, and immune surveillance. Structurally, podosomes consist of a protrusive actin core surrounded by adhesion proteins. Although podosome protrusion forces have been quantified, the magnitude, spatial distribution, and orientation of the opposing tensile forces remain poorly characterized. Here we use DNA nanotechnology to create probes that measure and manipulate podosome tensile forces with molecular piconewton (pN) resolution. Specifically, Molecular Tension-Fluorescence Lifetime Imaging Microscopy (MT-FLIM) produces maps of the cellular adhesive landscape, revealing ring-like tensile forces surrounding podosome cores. Photocleavable adhesion ligands, breakable DNA force probes, and pharmacological inhibition demonstrate local mechanical coupling between integrin tension and actin protrusion. Thus, podosomes use pN integrin forces to sense and respond to substrate mechanics. This work deepens our understanding of podosome mechanotransduction and contributes tools that are widely applicable for studying receptor mechanics at dynamic interfaces.

     
    more » « less
  5. Cellular unjamming is the collective fluidization of cell motion and has been linked to many biological processes, including development, wound repair, and tumor growth. In tumor growth, the uncontrolled proliferation of cancer cells in a confined space generates mechanical compressive stress. However, because multiple cellular and molecular mechanisms may be operating simultaneously, the role of compressive stress in unjamming transitions during cancer progression remains unknown. Here, we investigate which mechanism dominates in a dense, mechanically stressed monolayer. We find that long-term mechanical compression triggers cell arrest in benign epithelial cells and enhances cancer cell migration in transitions correlated with cell shape, leading us to examine the contributions of cell–cell adhesion and substrate traction in unjamming transitions. We show that cadherin-mediated cell–cell adhesion regulates differential cellular responses to compressive stress and is an important driver of unjamming in stressed monolayers. Importantly, compressive stress does not induce the epithelial–mesenchymal transition in unjammed cells. Furthermore, traction force microscopy reveals the attenuation of traction stresses in compressed cells within the bulk monolayer regardless of cell type and motility. As traction within the bulk monolayer decreases with compressive pressure, cancer cells at the leading edge of the cell layer exhibit sustained traction under compression. Together, strengthened intercellular adhesion and attenuation of traction forces within the bulk cell sheet under compression lead to fluidization of the cell layer and may impact collective cell motion in tumor development and breast cancer progression. 
    more » « less