skip to main content


Title: Examining the role of acceptor molecule structure in self-assembled bilayers: surface loading, stability, energy transfer, and upconverted emission
Self-assembly of sensitizer and acceptor molecules has recently emerged as a promising strategy to facilitate and harness photon upconversion via triplet–triplet annihilation (TTA-UC). In addition to the energetic requirements, the structure and relative orientation of these molecules can have a strong influence on TTA-UC rates and efficiency. Here we report the synthesis of five different acceptor molecules composed of an anthracene core functionalized with 9,10- or 2,6-phenyl, methyl, or directly bound phosphonic acid groups and their incorporation into self-assembled bilayers on a ZrO 2 surface. All five films facilitate green-to-blue photon upconversion with Φ uc as high as 0.0023. The efficiency of TTA, and not triplet energy transfer, fluorescence, or losses via FRET, was primarily responsible for dictating the Φ uc emission. Even for molecules having similar photophysical properties, variation in the position of the phosphonic acid resulted in dramatically different Φ TTA , I th values, γ TTA , and D . Interestingly, we observed a strong linear correlation between Φ TTA and the I th value but the cause of this relationship, if any, is unclear.  more » « less
Award ID(s):
1752782
NSF-PAR ID:
10094779
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
31
ISSN:
1463-9076
Page Range / eLocation ID:
20513 to 20524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrating molecular photon upconversion via triplet–triplet annihilation (TTA-UC) directly into a solar cell offers a means of harnessing sub-bandgap, near infrared (NIR) photons and surpassing the Shockley–Queisser limit. However, all integrated TTA-UC solar cells to date only harness visible light. Here, we incorporate an osmium polypyridal complex (Os) as the triplet sensitizer in a metal ion linked multilayer photoanode that is capable of harnessing NIR light via S 0 to T 1 * excitation, triple energy transfer to a phosphonated bis(9,10-diphenylethynyl)anthracene annihilator (A), TTA-UC, and electron injection into TiO 2 from the upcoverted state. The TiO 2 -A-Zn-Os devices have five-fold higher photocurrent (∼3.5 μA cm −2 ) than the sum of their parts. IPCE data and excitation intensity dependent measurements indicate that the NIR photons are harvested through a TTA-UC mechanism. Transient absorption spectroscopy is used to show that the low photocurrent, as compared to visible light harnessing TTA-UC solar cells, can be atributed to: (1) slow sensitizer to annihilator triplet energy transfer, (2) a low injection yield for the annihilator, and (3) fast back energy transfer from the upconverted state to the sensitizer. Regardless, these results serve as a proof-of-concept that NIR photons can be harnessed via an S 0 to T 1 * sensitizer excited, integrated TTA-UC solar cell and that further improvements can readily be made by remedying the performance limiting processes noted above. 
    more » « less
  2. Triplet–triplet annihilation upconversion (TTA-UC) is a process that shows promise for applications such as energy-harvesting and light-generation technologies. The irradiance dependent performance of TTA-UC systems is typically gauged using a graphical analysis, rather than a detailed model. Additionally, kinetic models for TTA-UC rarely incorporate mass conservation, which is a phenomenon that can have important consequences under experimentally relevant conditions. We present an analytical, mass-conserving kinetic model for TTA-UC, and demonstrate that the mass-conservation constraint cannot generally be ignored. This model accounts for saturation in TTA-UC data. Saturation complicates the interpretation of the threshold irradiance I th , a popular performance metric. We propose two alternative figures of merit for overall performance. Finally, we show that our model can robustly fit experimental data from a wide variety of sensitized TTA-UC systems, enabling the direct and accurate determination of I th and of our proposed performance metrics. We employ this fitting procedure to benchmark and compare these metrics, using data from the literature. 
    more » « less
  3. Abstract

    Singlet fission and triplet-triplet annihilation upconversion are two multiexciton processes intimately related to the dynamic interaction between one high-lying energy singlet and two low-lying energy triplet excitons. Here, we introduce a series of dendritic macromolecules that serve as platform to study the effect of interchromophore interactions on the dynamics of multiexciton generation and decay as a function of dendrimer generation. The dendrimers (generations 1–4) consist of trimethylolpropane core and 2,2-bis(methylol)propionic acid (bis-MPA) dendrons that provide exponential growth of the branches, leading to a corona decorated with pentacenes for SF or anthracenes for TTA-UC. The findings reveal a trend where a few highly ordered sites emerge as the dendrimer generation grows, dominating the multiexciton dynamics, as deduced from optical spectra, and transient absorption spectroscopy. While the dendritic structures enhance TTA-UC at low annihilator concentrations in the largest dendrimers, the paired chromophore interactions induce a broadened and red-shifted excimer emission. In SF dendrimers of higher generations, the triplet dynamics become increasingly dominated by pairwise sites exhibiting strong coupling (Type II), which can be readily distinguished from sites with weaker coupling (Type I) by their spectral dynamics and decay kinetics.

     
    more » « less
  4. Optical upconversion (UC) of low energy photons into high energy photons enables solar cells to harvest photons with energies below the band gap of the absorber, reducing the transmission loss. UC based on triplet–triplet annihilation (TTA) in organic chromophores can upconvert photons from sunlight, albeit with low conversion efficiency. We utilize three energy-based criteria to assess the UC potential of TTA emitters in terms of the quantum yield (QY) and the anti-Stokes shift. The energy loss in the singlet pathway of an emitter encounter complex, where a high energy photon is emitted, determines whether a chromophore may undergo TTA. The energy loss in the triplet pathway, which is the main competing process, impacts the TTA QY. The energy difference between the lowest singlet and triplet excitation states in TTA emitters sets an upper bound for the anti-Stokes shift of TTA-UC. Using the energetic criteria evaluated by time-dependent density functional theory (TDDFT) calculations, we find that benzo[ a ]tetracene, benzo[ a ]pyrene, and their derivatives are promising TTA emitters. The energetics assessment and computer simulations could be used to efficiently discover and design more candidate high-performance TTA emitters. 
    more » « less
  5. The development of efficient solid-state photon upconversion (UC) devices remains paramount for practical applications of the technology. In recent years, the incorporation of perovskite thin films as triplet sensitizers for triplet–triplet annihilation (TTA)-based UC has provided a promising solution. In the pursuit of finding an “ideal annihilator” to maximize the apparent anti-Stokes shift, we investigate naphtho[2,3-a]pyrene (NaPy) as an annihilator in both solution-based and perovskite-sensitized TTA-UC systems. Surprisingly, we observe different emission behaviors of NaPy in the solid state based on the excitation wavelength. Under direct excitation, a high-energy transition S1' dominates the emission spectrum, while UC results in increased emission from a lower lying state S1''. We propose that this is the result of aggregation-related lowering of the singlet excited state thus changing the fundamental energetic landscape underlying TTA. Aggregation decreases the singlet energy below the energy level of the triplet pair state 1(TT), yielding energetically favorable emission from the aggregated singlet state S1'' and weak emission from the higher lying singlet state S1' through thermally or entropically driven TTA-UC. 
    more » « less