skip to main content


Title: Photoionization of neutral iron from the ground and excited states
The B-spline R-matrix method is used to investigate the photoionization of neutral iron from the ground and excited states in the energy region from the ionization thresholds to 2 Ry. The multiconfiguration Hartree-Fock method in connection with adjustable configuration expansions and term-dependent orbitals is employed for an accurate representation of the initial states of Fe I and the target wave functions of Fe II. The close-coupling expansion contains 261 LS states of Fe II and includes all levels of the 3d^6 4s, 3d^5 4s^2, 3d^7, 3d^6 4p, and 3d^5 4s4p configurations. Full inclusion of all terms from the principal configurations considerably changes both the lowenergy resonance structure and the energy dependence of the background cross sections. Partial cross sections are analyzed in detail to clarify the most important scattering channels. Comparison with other calculations is used to place uncertainty bounds on our final photoionization cross sections and to assess the likely uncertainties in the existing data sets.  more » « less
Award ID(s):
1803844 1520970 1403245
NSF-PAR ID:
10094786
Author(s) / Creator(s):
Date Published:
Journal Name:
Physical review, A
Volume:
99
Issue:
99
ISSN:
2469-9934
Page Range / eLocation ID:
023430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The B-spline R-matrix method has been used to investigate cross-sections for photoionization of neutral scandium from the ground and excited states in the energy region from the 3d and 4s valence electron ionization thresholds to 25 eV. The initial bound states of Sc and the final residual Sc+ ionic states have been accurately calculated by combining the multiconfiguration Hartree-Fock method with the frozen-core close-coupling approach. The lowest 20 bound states of Sc I belonging to the ground 3d4s2 and excited 3d24s, 3d24p, 3d4s4p, 4s24p, and 3d3 configurations have been considered as initial states. The 81 LS final ionic states of Sc+ belonging to the terms of 3p63d2, 3p63d4l (l = 0–3), 3p63d5l (l = 0–3), 3p63d6s, 3p64s2, 3p64s4l (l = 0–3), 3p64s5l (l = 0–1), and 3p64p2 configurations have been included in the final-state close-coupling expansion. The cross-sections are dominated by complicated resonance structures in the low energy region converging to several Sc+ ionic thresholds. The inclusion of all these final ionic states has been noted to significantly impact the near-threshold resonance structures and background cross-sections. The important scattering channels for leaving the residual ion in various final states have been identified, and the 3d electron ionization channels have been noted to dominate the cross-sections at higher photon energies. 
    more » « less
  2. null (Ed.)
    Partial and total photoionization cross sections of iron-peak elements are important for the determination of abundances in late-type stars and nebular objects. We have investigated photoionization of neutral chromium from the ground and excited states in the low energy region from the first ionization threshold at 6.77 eV to 30 eV. Accurate descriptions of the initial bound states of Cr I and the final residual Cr II ionic states have been obtained in the multiconfiguration Hartree-Fock method together with adjustable configuration expansions and term-dependent non-orthogonal orbitals. The B-spline R-matrix method has been used for the calculation of photoionization cross sections. The 194 LS final ionic states of Cr II 3d44s, 3d34s2, 3d5, 3d44p, and 3d34s4p principal configurations have been included in the close-coupling expansion. The inclusion of all terms of these configurations has significant impact on the near-threshold resonance structures as well as on the nonresonant background cross sections. Total photoionization cross sections from the ground 3d54sa7S and excited 3d54sa5S, 3d44s2a5D, 3d54pz5P, and 3d44s4py5P states of Cr I have been compared with other available R-matrix calculation to estimate the likely uncertainties in photoionization cross sections. We analyzed the partial photoionization cross sections for leaving the residual ion in various states to identify the important scattering channels, and noted that 3d electron ionization channel becomes dominant at higher energies. 
    more » « less
  3. Abstract

    The ionospheric O+number density can be measured remotely during the day by observing its optically thick 83.4 nm radiance. Some ambiguity is present in the process of retrieving the density due to uncertainties in the initial excitation rate. This can be removed by observing a companion optically thin emission at 61.7 nm originating from the O+(3s2P) state, providing that the ratio of the initial excitation rates is known. Analyses of ICON EUV data using an 83.4/61.7 emission ratio of order 10 result in O+densities lower by ∼2 than other measurements. Key to relating the two emissions is accurate knowledge of the partial photoionization cross sections and the spectroscopy of O+—the topic of this paper. Up to now, no independent evaluation of the ratio of the 83.4/61.6 emission ratio exists. The recent availability of state‐of‐the‐art calculations of O partial photoionization cross sections into a variety of O+states presents an opportunity to evaluate the O+(2p44P)/O+(3s2P) ionization rate ratio. We calculate excitation of these parent states of the emissions including both direct and cascade excitation from higher lying O+energy states. The resulting theoretical prediction gives ratios that range from 13.5 to 12 from solar minimum to maximum, larger than the value of 10 used by the ICON 83.4 and 61.7 nm algorithm. The higher theoretical values for the ratio reconcile the ∼2 discrepancy between simultaneous ICON and other electron density measurements.

     
    more » « less
  4. Metastable phases of the photoswitchable molecular magnet K0.3Co[Fe(CN)6]0.77 ⋅  nH2O in sub-micrometer particles have been structurally investigated by synchrotron powder x-ray diffraction (PXRD) measurements. The K0.3Co[Fe(CN)6]0.77 ⋅  nH2O bulk compound (studied here with a sample having average particle size of 500 nm) undergoes a charge transfer coupled spin transition (CTCST), where spin configurations change between a paramagnetic CoII( S = 3/2) –FeIII( S = 1/2) high-temperature (HT) state and a diamagnetic CoIII( S = 0) –FeII( S = 0) low-temperature (LT) state. The bulk compound exhibits a unique intermediate (IM) phase, which corresponds to a mixture of HT and LT spin states that depend on the cooling rate. Several hidden metastable HT states emerge as a function of thermal and photo stimuli, namely: (1) a quench (Q) state generated from the HT state by flash cooling, (2) a LTPX state obtained by photoexcitation from the LT state derived by thermal relaxation from the Q state, and (3) an IMPX state accessed by photo-irradiation from the IM state. A sample with a smaller particle size, 135 nm, is investigated for which the particles are on the scale of the coherent LT domains in the IM phase within the larger 500 nm sample. PXRD studies under controlled thermal and/or optical excitations have clarified that the reduction of the particle size profoundly affects the structural changes associated with the CTCST. The unusual IM state is also observed as segregated domains in the 135 nm particle, but the collective structural transformations are more hindered in small particles. The volume change decreases to 2%–3%, almost half the value found for 500 nm particles (5%–8%), even though the linear thermal expansion coefficients are larger for the smaller particles. Furthermore, photoexcitation from the IM and LT states does not turn into single phases in the smaller particles, presumably because of the multiple interfaces and/or internal stress generated by the coexistence of small CoII–FeIIIand CoIII–FeIIdomains in the lattice. Since the reduced particle size limits cooperativity and domain growth in the lattice, CTCST in the small particle sample becomes less sensitive to external stimuli.

     
    more » « less
  5. Abstract

    The mineral apatite, Ca10(PO4)6(F,OH,Cl)2, incorporates sulfur (S) during crystallization from S-bearing hydrothermal fluids and silicate melts. Our previous studies of natural and experimental apatite demonstrate that the oxidation state of S in apatite varies systematically as a function of oxygen fugacity (fO2). The S oxidation states –1 and –2 were quantitatively identified in apatite crystallized from reduced, S-bearing hydrothermal fluids and silicate melts by using sulfur K-edge X-ray absorption near-edge structure spectroscopy (S-XANES) where S 6+/ΣS in apatite increases from ~0 at FMQ-1 to ~1 at FMQ+2, where FMQ refers to the fayalite-magnetite-quartz fO2 buffer. In this study, we employ quantum-mechanical calculations to investigate the atomistic structure and energetics of S(-I) and S(-II) incorporated into apatite and elucidate incorporation mechanisms.

    One S(-I) species (disulfide, S22−) and two S(-II) species (bisulfide, HS−, and sulfide, S2−) are investigated as possible forms of reduced S species in apatite. In configuration models for the simulation, these reduced S species are positioned along the c-axis channel, originally occupied by the column anions F, Cl, and OH in the end-member apatites. In the lowest-energy configurations of S-incorporated apatite, disulfide prefers to be positioned halfway between the mirror planes at z = 1/4 and 3/4. In contrast, the energy-optimized bisulfide is located slightly away from the mirror planes by ~0.04 fractional units in the c direction. The energetic stability of these reduced S species as a function of position along the c-axis can be explained by the geometric and electrostatic constraints of the Ca and O planes that constitute the c-axis channel.

    The thermodynamics of incorporation of disulfide and bisulfide into apatite is evaluated by using solid-state reaction equations where the apatite host and a solid S-bearing source phase (pyrite and Na2S2(s) for disulfide; troilite and Na2S(s) for sulfide) are the reactants, and the S-incorporated apatite and an anion sink phase are the products. The Gibbs free energy (ΔG) is lower for incorporation with Na-bearing phases than with Fe-bearing phases, which is attributed to the higher energetic stability of the iron sulfide minerals as a source phase for S than the sodium sulfide phases. The thermodynamics of incorporation of reduced S is also evaluated by using reaction equations involving dissolved disulfide and sulfide species [HnS(aq)(2−n) and HnS(aq)(2−n); n = 0, 1, and 2] as a source phase. The ΔG of S-incorporation increases for fluorapatite and chlorapatite, and decreases for hydroxylapatite, as these species are protonated (i.e., as n changes from 0 to 2). These thermodynamic results demonstrate that the presence of reduced S in apatite is primarily controlled by the chemistry of magmatic and hydrothermal systems where apatite forms (e.g., an abundance of Fe; solution pH). Ultimately, our methodology developed for evaluating the thermodynamics of S incorporation in apatite as a function of temperature, pH, and composition is highly applicable to predicting the trace and volatile element incorporation in minerals in a variety of geological systems. In addition to solid-solid and solid-liquid equilibria treated here at different temperatures and pH, the methodology can be easily extended to different pressure conditions by just performing the quantum-mechanical calculations at elevated pressures.

     
    more » « less