skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sub-micrometer particle size effects on metastable phases for a photoswitchable Co–Fe Prussian blue analog
Metastable phases of the photoswitchable molecular magnet K0.3Co[Fe(CN)6]0.77 ⋅  nH2O in sub-micrometer particles have been structurally investigated by synchrotron powder x-ray diffraction (PXRD) measurements. The K0.3Co[Fe(CN)6]0.77 ⋅  nH2O bulk compound (studied here with a sample having average particle size of 500 nm) undergoes a charge transfer coupled spin transition (CTCST), where spin configurations change between a paramagnetic CoII( S = 3/2) –FeIII( S = 1/2) high-temperature (HT) state and a diamagnetic CoIII( S = 0) –FeII( S = 0) low-temperature (LT) state. The bulk compound exhibits a unique intermediate (IM) phase, which corresponds to a mixture of HT and LT spin states that depend on the cooling rate. Several hidden metastable HT states emerge as a function of thermal and photo stimuli, namely: (1) a quench (Q) state generated from the HT state by flash cooling, (2) a LTPX state obtained by photoexcitation from the LT state derived by thermal relaxation from the Q state, and (3) an IMPX state accessed by photo-irradiation from the IM state. A sample with a smaller particle size, 135 nm, is investigated for which the particles are on the scale of the coherent LT domains in the IM phase within the larger 500 nm sample. PXRD studies under controlled thermal and/or optical excitations have clarified that the reduction of the particle size profoundly affects the structural changes associated with the CTCST. The unusual IM state is also observed as segregated domains in the 135 nm particle, but the collective structural transformations are more hindered in small particles. The volume change decreases to 2%–3%, almost half the value found for 500 nm particles (5%–8%), even though the linear thermal expansion coefficients are larger for the smaller particles. Furthermore, photoexcitation from the IM and LT states does not turn into single phases in the smaller particles, presumably because of the multiple interfaces and/or internal stress generated by the coexistence of small CoII–FeIIIand CoIII–FeIIdomains in the lattice. Since the reduced particle size limits cooperativity and domain growth in the lattice, CTCST in the small particle sample becomes less sensitive to external stimuli.  more » « less
Award ID(s):
1904596
PAR ID:
10363309
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
131
Issue:
8
ISSN:
0021-8979
Page Range / eLocation ID:
Article No. 085110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A series of core–shell heterostructures consisting of the spin transition Prussian blue analogue Rb a Co b [Fe(CN) 6 ] c · m H 2 O (RbCoFe–PBA) as core with different shell thicknesses of K j Ni k [Co(CN) 6 ] l · n H 2 O (KNiCo-PBA) has been prepared and studied as the cores undergo both thermal and light-induced phase changes. Synchrotron powder diffraction and SQUID magnetometry indicate the intersite cooperativity of the charge transfer coupled spin transition (CTCST) in the RbCoFe–PBA core decreases while the extent of lattice contraction is reduced relative to the uncoated particles. Isothermal relaxation measurements from the photo-induced high-spin (HS) state to the low-spin (LS) ground state of the RbCoFe–PBA core show that the energy barrier of the HS to LS transition dramatically decreases when adding the KNiCo-PBA shells, becoming smaller when the shell is thicker. The RbCoFe–PBA@KNiCo-PBA series is unique because the lattice parameter of KNiCo-PBA grown on the high-spin RbCoFe–PBA core particle is expanded relative to its equilibrium lattice parameter. As a result, the lattice mismatch is relieved during the spin transition. Analysis of the structural microstrain in both core and shell during the CTCST process reveals the different mechanisms by which the heterostructure accommodates the strain. 
    more » « less
  2. Abstract A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant. 
    more » « less
  3. Abstract Ferrocyanide, such as K4[Fe(CN)6], is one of the most popular cathode electrolyte (catholyte) materials in redox flow batteries. However, its chemical stability in alkaline redox flow batteries is debated. Mechanistic understandings at the molecular level are necessary to elucidate the cycling stability of K4[Fe(CN)6] and its oxidized state (K3[Fe(CN)6]) based electrolytes and guide their proper use in flow batteries for energy storage. Herein, a suite of battery tests and spectroscopic studies are presented to understand the chemical stability of K4[Fe(CN)6] and its charged state, K3[Fe(CN)6], at a variety of conditions. In a strong alkaline solution (pH 14), it is found that the balanced K4[Fe(CN)6]/K3[Fe(CN)6] half‐cell experiences a fast capacity decay under dark conditions. The studies reveal that the chemical reduction of K3[Fe(CN)6] by a graphite electrode leads to the charge imbalance in the half‐cell cycling and is the major cause of the observed capacity decay. In addition, at pH 14, K3[Fe(CN)6] undergoes a slow CN/OHexchange reaction. The dissociated CNligand can chemically reduce K3[Fe(CN)6] to K4[Fe(CN)6] and it is converted to cyanate (OCN) and further, decomposes into CO32‐and NH3. Ultimately, the irreversible chemical conversion of CNto OCNleads to the irreversible decomposition of K4/K3[Fe(CN)6] at pH 14. 
    more » « less
  4. Future molecular microelectronics require the electronic conductivity of the device to be tunable without impairing the voltage control of the molecular electronic properties. This work reports the influence of an interface between a semiconducting polyaniline polymer or a polar poly-D-lysine molecular film and one of two valence tautomeric complexes, i.e. , [Co III (SQ)(Cat)(4-CN-py) 2 ] ↔ [Co II (SQ) 2 (4-CN-py) 2 ] and [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ]. The electronic transitions and orbitals are identified using X-ray photoemission, X-ray absorption, inverse photoemission, and optical absorption spectroscopy measurements that are guided by density functional theory. Except for slightly modified binding energies and shifted orbital levels, the choice of the underlying substrate layer has little effect on the electronic structure. A prominent unoccupied ligand-to-metal charge transfer state exists in [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ] that is virtually insensitive to the interface between the polymer and tautomeric complexes in the Co II high-spin state. 
    more » « less
  5. Bis(triphenylsulfonium) tetrachloridomanganate(II), (C18H15S)2[MnCl4] (I), triphenylsulfonium tetrachloridoferrate(III), (C18H15S)[FeCl4] (II), and bis(triphenylsulfonium) tetrachloridocobaltate(II), (C18H15S)2[CoCl4] (III), crystallize in the monoclinic space groupsP21/n[(I) and (III)] andP21/c[(II)]. Compounds (I) and (III) each contain two crystallographically independent triphenylsulfonium (TPS+) cations in the asymmetric unit, whereas (II) has one. In all three compounds, the sulfonium centers adopt distorted trigonal–pyramidal geometries, with S—C bond lengths falling roughly in the 1.78–1.79 Å range and C—S—C angles observed at about 101 to 106°. The [MCl4]n−anions (M= Mn2+, Fe3+, Co2+;n= 2,1,2) adopt slightly distorted tetrahedral geometries, withM—Cl bond lengths in the 2.19–2.38 Å range and Cl—M—Cl angles of approximately 104–113°. Hirshfeld surface analyses shows that H...H and H...C contacts dominate the TPS+cation environments, whereas H...Cl and shortM—S interactions link each [MCl4]n−anion to the surrounding cations. In (I) and (III), inversion-centered π–π stacking further consolidates the crystal packing, while in (II) no π–π interactions are observed. 
    more » « less