Abstract The long‐term state of stress in the subduction forearc depends on the balance between margin‐normal compression due to the plate‐coupling force and the margin‐normal tension due to the gravitational force on the margin topography. In most subduction margins, the outer forearc is largely in margin‐normal compression due to the dominance of the plate‐coupling force. The inner forearc's state of stress varies within and among subduction zones, but what gives rise to this variation is unclear. We examine the state of stress in the forearc region of nine subduction zones by inverting focal mechanism solutions for shallow forearc crustal earthquakes for five zones and inferring the previous inversion results for the other four. The results indicate that the inner forearc stress state is characterized by margin‐normal horizontal deviatoric tension in parts of Nankai, Hikurangi, and southern Mexico. The vertical and margin‐normal horizontal stresses are similar in magnitudes in northern Cascadia as previously reported and are in a neutral stress state. The inner forearc stress state in the rest of the study regions is characterized by margin‐normal horizontal deviatoric compression. Tension in the inner forearc tends to occur where plate coupling is shallow. A larger width of the forearc also promotes inner‐forearc tension. However, regional tectonics may overshadow or accentuate the background stress state in the inner forearc, such as in Hikurangi.
more »
« less
Stress state-dependent mechanics of additively manufactured 304L stainless steel: Part 1 – characterization and modeling of the effect of stress state and texture on microstructural evolution
- Award ID(s):
- 1652575
- PAR ID:
- 10094952
- Date Published:
- Journal Name:
- Materials Science and Engineering: A
- Volume:
- 743
- Issue:
- C
- ISSN:
- 0921-5093
- Page Range / eLocation ID:
- 811 to 823
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRH PVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRH PVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRH PVN neurons.more » « less
An official website of the United States government

