Abstract Biological organisms experience constantly changing environments, from sudden changes in physiology brought about by feeding, to the regular rising and setting of the Sun, to ecological changes over evolutionary timescales. Living organisms have evolved to thrive in this changing world but the general principles by which organisms shape and are shaped by time varying environments remain elusive. Our understanding is particularly poor in the intermediate regime with no separation of timescales, where the environment changes on the same timescale as the physiological or evolutionary response. Experiments to systematically characterize the response to dynamic environments are challenging since such environments are inherently high dimensional. This roadmap deals with the unique role played by time varying environments in biological phenomena across scales, from physiology to evolution, seeking to emphasize the commonalities and the challenges faced in this emerging area of research.
more »
« less
The International Conference on Intelligent Biology and Medicine (ICIBM) 2018: systems biology on diverse data types
- Award ID(s):
- 1817355
- PAR ID:
- 10095014
- Date Published:
- Journal Name:
- BMC Systems Biology
- Volume:
- 12
- Issue:
- S8
- ISSN:
- 1752-0509
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
G., Renata Raidou; Sommer, Björn; W., Torsten Kuhlen; Krone, Michael; Schultz, Thomas; Wu, Hsiang-Yun (Ed.)We introduce a novel multi-modal 3D image registration framework based on 3D user-guided deformation of both volume's shape and intensity values. Being able to apply deformations in 3D gives access to a wide new range of interactions allowing for the registration of images from any acquisition method and of any organ, complete or partial. Our framework uses a state of the art 3D volume rendering method for real-time feedback on the registration accuracy as well as the image deformation. We propose a novel methodological variation to accurately display 3D segmented voxel grids, which is a requirement in a registration context for visualizing a segmented atlas. Our pipeline is implemented in an open-source software (available via GitHub) and was directly used by biologists for registration of mouse brain model autofluorescence acquisition on the Allen Brain Atlas. The latter mapping allows them to retrieve regions of interest properly identified on the segmented atlas in acquired brain datasets and therefore extract only high-resolution images of those areas, avoiding the creation of images too large to be processed.more » « less
An official website of the United States government

