Abstract An unsupervised machine learning method is introduced to align medical images in the context of the large deformation elasticity coupled with growth and remodeling biophysics. The technique, which stems from the principle of minimum potential energy in solid mechanics, consists of two steps: Firstly, in the predictor step, the geometric registration is achieved by minimizing a loss function composed of a dissimilarity measure and a regularizing term. Secondly, the physics of the problem, including the equilibrium equations along with growth mechanics, are enforced in a corrector step by minimizing the potential energy corresponding to a Dirichlet problem, where the predictor solution defines the boundary condition and is maintained by distance functions. The features of the new solution procedure, as well as the nature of the registration problem, are highlighted by considering several examples. In particular, registration problems containing large non-uniform deformations caused by extension, shearing, and bending of multiply-connected regions are used as benchmarks. In addition, we analyzed a benchmark biological example (registration for brain data) to showcase that the new deep learning method competes with available methods in the literature. We then applied the method to various datasets. First, we analyze the regrowth of the zebrafish embryonic fin from confocal imaging data. Next, we evaluate the quality of the solution procedure for two examples related to the brain. For one, we apply the new method for 3D image registration of longitudinal magnetic resonance images of the brain to assess cerebral atrophy, where a first-order ODE describes the volume loss mechanism. For the other, we explore cortical expansion during early fetal brain development by coupling the elastic deformation with morphogenetic growth dynamics. The method and examples show the ability of our framework to attain high-quality registration and, concurrently, solve large deformation elasticity balance equations and growth and remodeling dynamics.
more »
« less
Eurographics Workshop on Visual Computing for Biology and Medicine
We introduce a novel multi-modal 3D image registration framework based on 3D user-guided deformation of both volume's shape and intensity values. Being able to apply deformations in 3D gives access to a wide new range of interactions allowing for the registration of images from any acquisition method and of any organ, complete or partial. Our framework uses a state of the art 3D volume rendering method for real-time feedback on the registration accuracy as well as the image deformation. We propose a novel methodological variation to accurately display 3D segmented voxel grids, which is a requirement in a registration context for visualizing a segmented atlas. Our pipeline is implemented in an open-source software (available via GitHub) and was directly used by biologists for registration of mouse brain model autofluorescence acquisition on the Allen Brain Atlas. The latter mapping allows them to retrieve regions of interest properly identified on the segmented atlas in acquired brain datasets and therefore extract only high-resolution images of those areas, avoiding the creation of images too large to be processed.
more »
« less
- Award ID(s):
- 2136744
- PAR ID:
- 10474741
- Editor(s):
- G., Renata Raidou; Sommer, Björn; W., Torsten Kuhlen; Krone, Michael; Schultz, Thomas; Wu, Hsiang-Yun
- Publisher / Repository:
- The Eurographics Association
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the realm of neuroscience, mapping the three-dimensional (3D) neural circuitry and architecture of the brain is important for advancing our understanding of neural circuit organization and function. This study presents a novel pipeline that transforms mouse brain samples into detailed 3D brain models using a collaborative data analytics platform called “Texera.” The user-friendly Texera platform allows for effective interdisciplinary collaboration between team members in neuroscience, computer vision, and data processing. Our pipeline utilizes the tile images from a serial two-photon tomography/TissueCyte system, then stitches tile images into brain section images, and constructs 3D whole-brain image datasets. The resulting 3D data supports downstream analyses, including 3D whole-brain registration, atlas-based segmentation, cell counting, and high-resolution volumetric visualization. Using this platform, we implemented specialized optimization methods and obtained significant performance enhancement in workflow operations. We expect the neuroscience community can adopt our approach for large-scale image-based data processing and analysis.more » « less
-
Deformable image registration (DIR), aiming to find spatial correspondence between images, is one of the most critical problems in the domain of medical image analysis. In this paper, we present a novel, generic, and accurate diffeomorphic image registration framework that utilizes neural ordinary differential equations (NODEs). We model each voxel as a moving particle and consider the set of all voxels in a 3D image as a high-dimensional dynamical system whose trajectory determines the targeted deformation field. Our method leverages deep neural networks for their expressive power in modeling dynamical systems, and simultaneously optimizes for a dynamical system between the image pairs and the corresponding transformation. Our formulation allows various constraints to be imposed along the transformation to maintain desired regularities. Our experiment results show that our method outperforms the benchmarks under various metrics. Additionally, we demonstrate the feasibility to expand our framework to register multiple image sets using a unified form of transformation, which could possibly serve a wider range of applications.more » « less
-
The structural network of the brain, or structural connectome, can be represented by fiber bundles generated by a variety of tractography methods. While such methods give qualitative insights into brain structure, there is controversy over whether they can provide quantitative information, especially at the population level. In order to enable population-level statistical analysis of the structural connectome, we propose representing a connectome as a Riemannian metric, which is a point on an infinite-dimensional manifold. We equip this manifold with the Ebin metric, a natural metric structure for this space, to get a Riemannian manifold along with its associated geometric properties. We then use this Riemannian framework to apply object-oriented statistical analysis to define an atlas as the Fréchet mean of a population of Riemannian metrics. This formulation ties into the existing framework for diffeomorphic construction of image atlases, allowing us to construct a multimodal atlas by simultaneously integrating complementary white matter structure details from DWMRI and cortical details from T1-weighted MRI. We illustrate our framework with 2D data examples of connectome registration and atlas formation. Finally, we build an example 3D multimodal atlas using T1 images and connectomes derived from diffusion tensors estimated from a subset of subjects from the Human Connectome Project.more » « less
-
In this work, we improve the performance of multi-atlas segmentation (MAS) by integrating the recently proposed VoteNet model with the joint label fusion (JLF) approach. Specifically, we first illustrate that using a deep convolutional neural network to predict atlas probabilities can better distinguish correct atlas labels from incorrect ones than relying on image intensity difference as is typical in JLF. Motivated by this finding, we propose VoteNet+, an improved deep network to locally predict the probability of an atlas label to differ from the label of the target image. Furthermore, we show that JLF is more suitable for the VoteNet framework as a label fusion method than plurality voting. Lastly, we use Platt scaling to calibrate the probabilities of our new model. Results on LPBA40 3D MR brain images show that our proposed method can achieve better performance than VoteNet.more » « less
An official website of the United States government

