skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physical Layer Control for Disaggregated Optical Systems
Abstract—Disaggregating optical communication systems can impact physical layer control. Recent progress on multi-domain transmission control and machine-learning provide capabilities for adaptation and development of engineering rules in the field with potential benefits for disaggregated systems.  more » « less
Award ID(s):
1601784
PAR ID:
10095019
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2018 Asia Communication and Photonics Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Modern control systems are featured by their hierarchical structure composed of cyber, physical and human layers. The intricate dependencies among multiple layers and units of modern control systems require an integrated framework to address cross-layer design issues related to security and resilience challenges. To this end, game theory provides a bottom-up modeling paradigm to capture the strategic interactions among multiple components of the complex system and enables a holistic view to understand and design cyber-physical-human control systems. In this review, we first provide a multi-layer perspective toward increasingly complex and integrated control systems and then introduce several variants of dynamic games for modeling different layers of control systems. We present game-theoretic methods for understanding the fundamental tradeoffs of robustness, security and resilience and developing a cross-layer approach to enhance the system performance in various adversarial environments. This review also includes three quintessential research problems that represent three research directions where dynamic game approaches can bridge between multiple research areas and make significant contributions to the design of modern control systems. The paper is concluded with a discussion on emerging areas of research that crosscut dynamic games and control systems. 
    more » « less
  2. Integer-order calculus fails to capture the long-range dependence (LRD) and memory effects found in many complex systems. Fractional calculus addresses these gaps through fractional-order integrals and derivatives, but fractional-order dynamical systems pose substantial challenges in system identification and optimal control tasks. In this paper, we theoretically derive the optimal control via linear quadratic regulator (LQR) for fractional-order linear time-invariant (FOLTI) systems and develop an end-to-end deep learning framework based on this theoretical foundation. Our approach establishes a rigorous mathematical model, derives analytical solutions, and incorporates deep learning to achieve data-driven optimal control of FOLTI systems. Our key contributions include: (i) proposing a novel method for system identification and optimal control strategy in FOLTI systems, (ii) developing the first end-to-end data-driven learning framework, Fractional-Order Learning for Optimal Control (FOLOC), that learns control policies from observed trajectories, and (iii) deriving theoretical bounds on the sample complexity for learning accurate control policies under fractional-order dynamics. Experimental results indicate that our method accurately approximates fractional-order system behaviors without relying on Gaussian noise assumptions, pointing to promising avenues for advanced optimal control. 
    more » « less
  3. Incorporating predictions of external inputs, which can otherwise be treated as disturbances, has been widely studied in control and computer science communities. These predictions are commonly referred to as preview in optimal control and lookahead in temporal logic synthesis. However, little work has been done for analyzing the value of preview information for safety control for systems with continuous state spaces. In this work, we start from showing general properties for discrete-time nonlinear systems with preview and strategies on how to determine a good preview time, and then we study a special class of linear systems, called systems in Brunovsky canonical form, and show special properties for this class of systems. In the end, we provide two numerical examples to further illustrate the value of preview in safety control. 
    more » « less
  4. Simulating stochastic systems with feedback control is challenging due to the complex interplay between the system’s dynamics and the feedback-dependent control protocols. We present a single-step-trajectory probability analysis to time-dependent stochastic systems. Based on this analysis, we revisit several time-dependent kinetic Monte Carlo (KMC) algorithms designed for systems under open-loop-control protocols. Our analysis provides a unified alternative proof to these algorithms, summarized into a pedagogical tutorial. Moreover, with the trajectory probability analysis, we present a novel feedback-controlled KMC algorithm that accurately captures the dynamics systems controlled by an external signal based on the measurements of the system’s state. Our method correctly captures the system dynamics and avoids the artificial Zeno effect that arises from incorrectly applying the direct Gillespie algorithm to feedback-controlled systems. This work provides a unified perspective on existing open-loop-control KMC algorithms and also offers a powerful and accurate tool for simulating stochastic systems with feedback control. 
    more » « less
  5. Electoral control refers to attacking elections by adding, deleting, or partitioning voters or candidates. Hemaspaandra, Hemaspaandra, and Menton recently discovered, for seven pairs (T, T′) of seemingly distinct standard electoral control types, that T and T′ are in practice identical: For each input I and each election system E, I is a “yes” instance of both T and T′ under E, or of neither. Surprisingly, this had previously gone undetected even as the field was score-carding how many standard control types various election systems were resistant to; various “different” cells on such score cards were, unknowingly, duplicate effort on the same issue. This naturally raises the worry that perhaps other pairs of control types are identical, and so work still is being needlessly duplicated.We completely determine, for all standard control types, which pairs are, for elections whose votes are linear orderings of the candidates, always identical. In particular, we prove that no identical control pairs exist beyond the known seven. We also for three central election systems completely determine which control pairs are identical (“collapse”) with respect to those particular election systems, and we also explore containment and incomparability relationships between control pairs. For approval voting, which has a different “type” for its votes, Hemaspaandra, Hemaspaandra, and Menton’s seven collapses still hold (since we observe that their argument applies to all election systems). However, we find 14 additional collapses that hold for approval voting but do not hold for some election systems whose votes are linear orderings of the candidates. We find one new collapse for veto elections and none for plurality. We prove that each of the three election systems mentioned have no collapses other than those inherited from Hemaspaandra, Hemaspaandra, and Menton or added in the present paper. We establish many new containment relationships between separating control pairs, and for each separating pair of standard control types classify its separation in terms of either containment (always, and strict on some inputs) or incomparability.Our work, for the general case and these three important election systems, clarifies the landscape of the 44 standard control types, for each pair collapsing or separating them, and also providing finer-grained information on the separations. 
    more » « less