Title: Dynamic games for secure and resilient control system design
Abstract Modern control systems are featured by their hierarchical structure composed of cyber, physical and human layers. The intricate dependencies among multiple layers and units of modern control systems require an integrated framework to address cross-layer design issues related to security and resilience challenges. To this end, game theory provides a bottom-up modeling paradigm to capture the strategic interactions among multiple components of the complex system and enables a holistic view to understand and design cyber-physical-human control systems. In this review, we first provide a multi-layer perspective toward increasingly complex and integrated control systems and then introduce several variants of dynamic games for modeling different layers of control systems. We present game-theoretic methods for understanding the fundamental tradeoffs of robustness, security and resilience and developing a cross-layer approach to enhance the system performance in various adversarial environments. This review also includes three quintessential research problems that represent three research directions where dynamic game approaches can bridge between multiple research areas and make significant contributions to the design of modern control systems. The paper is concluded with a discussion on emerging areas of research that crosscut dynamic games and control systems. more »« less
Modern cyber-physical systems are enabled by electronic hardware and embedded systems. The security of these sub-components is a concern during the design and operational phases of cyber-physical system life cycles. Compromised electronics can result in mission-critical failures, unauthorized access, and other severe consequences. As systems become more complex and feature greater connectivity, system owners must make decisions regarding how to mitigate risks and ensure resilience and trust. This paper provides an overview of research efforts related to assessing and managing risks, resilience, and trust with an emphasis on electronic hardware and embedded systems. The research takes a decision-oriented perspective, drawing from the perspectives of scenario planning and portfolio analysis, and describes examples related to the risk-based prioritization of cyber assets in large-scale systems.
Neema, Himanshu; Potteiger, Bradley; Koutsoukos, Xenofon; Karsai, Gabor; Volgyesi, Peter; Sztipanovits, Janos
(, Proceedings of the 33rd Annual ACM Symposium on Applied Computing)
Owing1 to an immense growth of internet-connected and learning-enabled cyber-physical systems (CPSs) [1], several new types of attack vectors have emerged. Analyzing security and resilience of these complex CPSs is difficult as it requires evaluating many subsystems and factors in an integrated manner. Integrated simulation of physical systems and communication network can provide an underlying framework for creating a reusable and configurable testbed for such analyses. Using a model-based integration approach and the IEEE High-Level Architecture (HLA) [2] based distributed simulation software; we have created a testbed for integrated evaluation of large-scale CPS systems. Our tested supports web-based collaborative metamodeling and modeling of CPS system and experiments and a cloud computing environment for executing integrated networked co-simulations. A modular and extensible cyber-attack library enables validating the CPS under a variety of configurable cyber-attacks, such as DDoS and integrity attacks. Hardware-in-the-loop simulation is also supported along with several hardware attacks. Further, a scenario modeling language allows modeling of alternative paths (Courses of Actions) that enables validating CPS under different what-if scenarios as well as conducting cyber-gaming experiments. These capabilities make our testbed well suited for analyzing security and resilience of CPS. In addition, the web-based modeling and cloud-hosted execution infrastructure enables one to exercise the entire testbed using simply a web-browser, with integrated live experimental results display.
Yang, Bowen; Yang, He; Ye, Jin
(, IEEE Journal of Emerging and Selected Topics in Power Electronics)
Despite the IEEE Power Electronics Society (PELS) establishing Technical Committee 10 on Design Methodologies with a focus on the cyber-physical security of power electronics systems, a holistic design methodology for addressing security vulnerabilities remains underdeveloped. This gap largely stems from the limited integration of computer science and power/control engineering studies in this interdisciplinary field. Addressing the inadequacy of unilateral cyber or control perspectives, this paper presents a novel four-layer cyber-physical security model specifically designed for electric machine drives. Central to this model is the innovative Control Information Flow (CIF) model, residing within the control layer, which serves as a pivotal link between the cyber layer’s vulnerable resources and the physical layer’s state-space models. By mapping vulnerable resources to control variable space and tracing attack propagation, the CIF model facilitates accurate impact predictions based on tainted control laws. The effectiveness and validity of this proposed model are demonstrated through hardware experiments involving two typical cyber-attack scenarios, underscoring its potential as a comprehensive framework for multidisciplinary security strategies.
Uwe, Busbach-Richard; Gerber, Brian J.
(, Economics and Culture)
Abstract Research purpose. Smart City technologies offer great promise for a higher quality of life, including improved public services, in an era of rapid and intense global urbanization. The use of intelligent or smart information and communication technologies to produce more efficient systems of services in those urban areas, captured under the broad rubric of “smart cities,” also create new vectors of risk and vulnerability. The aim of this article is to raise consideration of an integrated cross-domain approach for risk reduction based on the risks smart cities are exposed to, on the one hand, from natural disasters and, on the other, from cyber-attacks. Design / Methodology / Approach. This contribution describes and explains the risk profile for which smart cities are exposed to both natural disasters and cyber-attacks. The vulnerability of smart city technologies to natural hazards and cyber-attacks will first be summarized briefly from each domain, outlining those respective domain characteristics. Subsequently, methods and approaches for risk reduction in the areas of natural hazards and ICT security will be examined in order to create the basis for an integrated cross-domain approach to risk reduction. Differences are also clearly identified if an adaptation of a risk reduction pattern appears unsuitable. Finally, the results are summarized into an initial, preliminary integrated cross-domain approach to risk reduction. Findings. Risk management in the two domains of ICT security and natural hazards is basically similar. Both domains use a multilayer approach in risk reduction, both have reasonably well-defined regimes and established risk management protocols. At the same time, both domains share a policymaking and policy implementation challenge of the difficulty of appropriately forecasting future risk and making corresponding resource commitments to address future risk. Despite similarities, different concepts like the CIA Triad, community resilience, absorption capacity and so on exist too. Future research of these concepts could lead to improve risk management. Originality / Value / Practical implications. Cyber-attacks on the ICT infrastructure of smart cities are a major vulnerability – but relatively little systematic evaluation exists on the topic. Likewise, ICT infrastructure is vulnerable to natural disasters too – and the risk of more severe natural disasters in the context of a global trend toward massive cities is increasing dramatically. Explicit consideration of the issues associated with cross-domain integration of reduction of interdependent risk is a necessary step in ensuring smart city technologies also serve to promote longer-term community sustainability and resilience.
Damm, Werner; Fränzle, Martin; Kerscher, Alyssa J.; Laine, Forrest; Bengler, Klaus; Biebl, Bianca; Hagemann, Willem; Held, Moritz; Hess, David; Ihme, Klas; et al
(, ACM Transactions on Cyber-Physical Systems)
Chenyang Lu
(Ed.)
The design and analysis of multi-agent human cyber-physical systems in safety-critical or industry-critical domains calls for an adequate semantic foundation capable of exhaustively and rigorously describing all emergent effects in the joint dynamic behavior of the agents that are relevant to their safety and well-behavior. We present such a semantic foundation. This framework extends beyond previous approaches by extending the agent-local dynamic state beyond state components under direct control of the agent and belief about other agents (as previously suggested for understanding cooperative as well as rational behavior) to agent-local evidence and belief about the overall cooperative, competitive, or coopetitive game structure. We argue that this extension is necessary for rigorously analyzing systems of human cyber-physical systems because humans are known to employ cognitive replacement models of system dynamics that are both non-stationary and potentially incongruent. These replacement models induce visible and potentially harmful effects on their joint emergent behavior and the interaction with cyber-physical system components.
Huang, Yunhan, Chen, Juntao, Huang, Linan, and Zhu, Quanyan. Dynamic games for secure and resilient control system design. Retrieved from https://par.nsf.gov/biblio/10208707. National Science Review 7.7 Web. doi:10.1093/nsr/nwz218.
Huang, Yunhan, Chen, Juntao, Huang, Linan, & Zhu, Quanyan. Dynamic games for secure and resilient control system design. National Science Review, 7 (7). Retrieved from https://par.nsf.gov/biblio/10208707. https://doi.org/10.1093/nsr/nwz218
@article{osti_10208707,
place = {Country unknown/Code not available},
title = {Dynamic games for secure and resilient control system design},
url = {https://par.nsf.gov/biblio/10208707},
DOI = {10.1093/nsr/nwz218},
abstractNote = {Abstract Modern control systems are featured by their hierarchical structure composed of cyber, physical and human layers. The intricate dependencies among multiple layers and units of modern control systems require an integrated framework to address cross-layer design issues related to security and resilience challenges. To this end, game theory provides a bottom-up modeling paradigm to capture the strategic interactions among multiple components of the complex system and enables a holistic view to understand and design cyber-physical-human control systems. In this review, we first provide a multi-layer perspective toward increasingly complex and integrated control systems and then introduce several variants of dynamic games for modeling different layers of control systems. We present game-theoretic methods for understanding the fundamental tradeoffs of robustness, security and resilience and developing a cross-layer approach to enhance the system performance in various adversarial environments. This review also includes three quintessential research problems that represent three research directions where dynamic game approaches can bridge between multiple research areas and make significant contributions to the design of modern control systems. The paper is concluded with a discussion on emerging areas of research that crosscut dynamic games and control systems.},
journal = {National Science Review},
volume = {7},
number = {7},
author = {Huang, Yunhan and Chen, Juntao and Huang, Linan and Zhu, Quanyan},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.