skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Land conservation can mitigate freshwater ecosystem services degradation due to climate change in a semiarid catchment: The case of the Portneuf River catchment, Idaho, USA
Award ID(s):
1639524
NSF-PAR ID:
10095046
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science of The Total Environment
Volume:
651
Issue:
P2
ISSN:
0048-9697
Page Range / eLocation ID:
1796 to 1809
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.

    This article is categorized under:

    Engineering Water > Methods

     
    more » « less
  2. Abstract

    Catchments in the Luquillo Experimental Forest (LEF) of Puerto Rico are warm, wet and tropical with steep elevational relief creating gradients in temperature and rainfall. Long‐term objectives of research at the site are to understand how changing climate and disturbance regimes alter hydrological and biogeochemical processes in the montane tropics and to provide information critical for managing and conserving tropical forest ecosystems globally. Measurements of hydrology and meteorology span decades, and currently include temperature, humidity, precipitation, cloud base level, throughfall, groundwater table elevation and stream discharge. The chemistry of rain, throughfall, and streams is measured weekly and lysimeters and wells are sampled monthly to quarterly. Multiple data sets document the effects of major hurricanes including Hugo (1989), Georges (1998) and Maria (2017) on vegetation, biota and catchment biogeochemistry and provide some of the longest available records of biogeochemical fluxes in tropical forests. Here we present an overview of the findings and the data sets that have been generated from the LEF, highlighting their importance for understanding montane tropical watersheds in the context of disturbance and global environmental change.

     
    more » « less
  3. null (Ed.)