skip to main content


Title: Findings from the First Year of a Project that Partners Engineers and Educators in Rural Schools
One significant barrier to broadening participation in engineering and recruiting future engineers is the pervasive lack of understanding or even misunderstanding of what engineering is and what engineers do. The challenges to broadening participation in engineering are further complicated as underrepresented groups often report constructs, such as cultural milieu and outcome expectations, as more important than interest in influencing career choices. Addressing such issues is difficult and single exposure interventions are unlikely to make engineering careers seem more relevant or attainable for most students. More sustainable interventions, designed to (1) challenge misperceptions and create relevant conceptions of engineering; (2) maintain and expand situational interest; and, (3) integrate with individual interests, values, and social identities, appear to hold more promise for creating significant change. As a possible means of developing more sustainable interventions, our ITEST project partners researchers, teachers, and local industry representatives in creating a series (approximately 6 across an academic year) of engineering-related learning activities for middle school children in three school systems in or near rural Appalachia. Across the first year of implementation, we involved nine teachers, six people working at three different companies and more than 500 students with a series of activities in each classroom. To examine the impact of our project, we are using mixed methods, including interviews, surveys, classroom observations, and classroom artifacts gathered from multiple project stakeholders, to answer the following research questions: RQ 1: How do participants conceptualize engineering careers? How and why do such perceptions shift throughout the project? RQ 2: What elements of the targeted intervention affect student motivation towards engineering careers specifically with regard to developing competencies and ability beliefs regarding engineering? RQ 3: How can strategic collaboration between K12 and industry promote a shift in teacher’s conceptions of engineers and increased self-efficacy in building and delivering engineering curriculum? RQ 4: How do stakeholder characteristics, perceptions, and dynamics affect the likelihood of sustainability in strategic collaborations between K12 and industry stakeholders? How do prevailing institutional and collaborative conditions mediate sustainability? Our findings to date offer insights across all research questions and have important implications for stakeholders hoping to raise awareness of engineering among youth, particularly in rural areas.  more » « less
Award ID(s):
1657263
NSF-PAR ID:
10095062
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Barriers to broadening participation in engineering to rural and Appalachian youth include misalignment with family and community values, lack of opportunities, and community misperceptions of engineering. While single interventions are unlikely to stimulate change in these areas, more sustainable interventions that are co-designed with local relevance appear promising. Through our NSF ITEST project, we test the waters of this intervention model through partnership with school systems and engineering industry to implement a series of engineering-themed, standards-aligned lessons for the middle school science classroom. Our mixed methods approach includes collection of interview and survey data from administrators, teachers, engineers, and university affiliates as well as observation and student data from the classroom. We have utilized theory from learning science and organizational collaboration to structure and inform our analysis and explore the impact of our project. The research is guided by the following questions: RQ 1: How do participants conceptualize engineering careers? How and why do such perceptions shift throughout the project? RQ 2: What elements of the targeted intervention affect student motivation towards engineering careers specifically with regard to developing competencies and ability beliefs regarding engineering? RQ 3: How can strategic collaboration between K12 and industry promote a shift in teacher’s conceptions of engineers and increased self-efficacy in building and delivering engineering curriculum? RQ 4: How do stakeholder characteristics, perceptions, and dynamics affect the likelihood of sustainability in strategic collaborations between K12 and industry stakeholders? How do prevailing institutional and collaborative conditions mediate sustainability? In year one, we involved nine 6th grade teachers, three engineering companies, and over 500 students. In year two, we expanded to include 7th grade teachers in our partner schools and the new students moving up to 6th grade. Lessons aligned with students' everyday experiences and connected to industry. For example, students created bouncy balls and tested their effectiveness on materials produced from partner manufacturing facilities. From preliminary analysis of data collected in the first two years of the project (e.g, the Draw an Engineer Test and teacher interviews), we have begun to see evidence of positive student and teacher impact. Additionally, our application of collaborative theory to the investigation of stakeholder perceptions of the project has revealed implications for partnering with school systems and engineering industry. For example, key individuals at each organization may serve as important conduits for program communication and collaborative work. 
    more » « less
  2. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less
  3. Broadening participation in engineering is critical given the gap between the nation’s need for engineering graduates and its production of them. Efforts to spark interest in engineering among PreK-12 students have increased substantially in recent years as a result. However, past research has demonstrated that interest is not always sufficient to help students pursue engineering majors, particularly for rural students. In many rural communities, influential adults (family, friends, teachers) are often the primary influence on career choice, while factors such as community values, lack of social and cultural capital, limited course availability, and inadequate financial resources act as potential barriers. To account for these contextual factors, this project shifts the focus from individual students to the communities to understand how key stakeholders and organizations support engineering as a major choice and addresses the following questions: RQ1. What do current undergraduate engineering students who graduated from rural high schools describe as influences on their choice to attend college and pursue engineering as a post-secondary major? RQ2. How does the college choice process differ for rural students who enrolled in a 4-year university immediately after graduating from high school and those who transferred from a 2-year institution? RQ3. How do community members describe the resources that serve as key supports as well as the barriers that hinder support in their community? RQ4. What strategies do community members perceive their community should implement to enhance their ability to support engineering as a potential career choice? RQ5. How are these supports transferable or adaptable by other schools? What community-level factors support or inhibit transfer and adaptation? To answer the research questions, we employed a three-phase qualitative study. Phase 1 focused on understanding the experiences and perceptions of current [University Name] students from higher-producing rural schools. Analysis of focus group and interview data with 52 students highlighted the importance of interest and support from influential adults in students’ decision to major in engineering. One key finding from this phase was the importance of community college for many of our participants. Transfer students who attended community college before enrolling at [University Name] discussed the financial influences on their decision and the benefits of higher education much more frequently than their peers. In Phase 2, we used the findings from Phase 1 to conduct interviews within the participants’ home communities. This phase helped triangulate students’ perceptions with the perceptions and practices of others, and, equally importantly, allowed us to understand the goals, attitudes, and experiences of school personnel and local community members as they work with students. Participants from the students’ home communities indicated that there were few opportunities for students to learn more about engineering careers and provided suggestions for how colleges and universities could be more involved with students from their community. Phase 3, scheduled for Spring 2020, will bring the findings from Phases 1 and 2 back to rural communities via two participatory design workshops. These workshops, designed to share our findings and foster collaborative dialogue among the participants, will enable us to explore factors that support or hinder transfer of findings and to identify policies and strategies that would enhance each community’s ability to support engineering as a potential career choice. 
    more » « less
  4. Broadening participation in the skilled technical workforce is a national priority given strong evidence of growing critical vacancies in engineering coupled with the urgent need for this workforce to better reflect the rich diversity of the nation. Scholars and activists often call for increased focus on education access, quality, and workforce development among rural Appalachian communities, noting that students from these communities are under-represented in higher education generally, and engineering careers specifically. Investing in preK-12 education, engaging youth as valued members of their communities, and cultivating workforce opportunities such as in advanced manufacturing have all been highlighted by the Appalachian Regional Commission as vital to strengthening economic resilience. However, scaffolding engineering and technical career pathways for Appalachian youth at scale in the context of broader systemic issues is challenging. Past research on the career choices of Appalachian youth show that sparked interest alone was not sufficient to consider engineering careers. Research on the sustained development of interest in engineering highlights rich networks of formal and informal experiences as catalysts or supportive infrastructure. Yet, access to such opportunities varies greatly. School systems often lack the necessary personnel, money, or space to offer these experiences, and, even if opportunities are available, often only a small subset of students may be able to participate. Further, common views of what engineering work is and who can do it are narrow, biased, and exclusive. This CAREER project has focused on three areas of research. The first area, focused on school-industry partnerships through COVID-19 in the region, highlighted the importance of rich partnerships, resilient stakeholders, and innovative contexts to persist throughout the COVID-19 pandemic. This is particularly pertinent to partnerships and collaboration, sustainability of these collaborations, and programming in the context of STEM skilled technical workforce development programs in rural places. The second area of research, focused on developing a conceptual framework for engineering education research and engagement in rural places, highlighted the importance of place, individual student and community assets, and leveraging these things to provide context and meaning in a decontextualized K-12 curriculum. Finally, the third research area, focused on systematically reviewing literature related to the assessment of systems thinking in K-12 education, highlighted the lack of comprehensive assessment tools that can apply across many educational disciplines but particularly in areas as it relates to socio-technical problems. Together, these three research areas ultimately seek to inform broader aspects of K-12 education, such as career and technical education, issues related to rural education, and ultimately focusing on students’ ability to handle complex problems in their communities or other contexts with systems thinking. 
    more » « less
  5. Broadening participation in the skilled technical workforce is a national priority given strong evidence of growing critical vacancies in engineering coupled with the urgent need for this workforce to better reflect the rich diversity of the nation. Scholars and activists often call for increased focus on education access, quality, and workforce development among rural Appalachian communities, noting that students from these communities are under-represented in higher education generally, and engineering careers specifically. Investing in preK-12 education, engaging youth as valued members of their communities, and cultivating workforce opportunities such as in advanced manufacturing have all been highlighted by the Appalachian Regional Commission as vital to strengthening economic resilience. However, scaffolding engineering and technical career pathways for Appalachian youth at scale in the context of broader systemic issues is challenging. Past research on the career choices of Appalachian youth show that sparked interest alone was not sufficient to consider engineering careers. Research on the sustained development of interest in engineering highlights rich networks of formal and informal experiences as catalysts or supportive infrastructure. Yet, access to such opportunities varies greatly. School systems often lack the necessary personnel, money, or space to offer these experiences, and, even if opportunities are available, often only a small subset of students may be able to participate. Further, common views of what engineering work is and who can do it are narrow, biased, and exclusive. This CAREER project has focused on three areas of research. The first area, focused on school-industry partnerships through COVID-19 in the region, highlighted the importance of rich partnerships, resilient stakeholders, and innovative contexts to persist throughout the COVID-19 pandemic. This is particularly pertinent to partnerships and collaboration, sustainability of these collaborations, and programming in the context of STEM skilled technical workforce development programs in rural places. The second area of research, focused on developing a conceptual framework for engineering education research and engagement in rural places, highlighted the importance of place, individual student and community assets, and leveraging these things to provide context and meaning in a decontextualized K-12 curriculum. Finally, the third research area, focused on systematically reviewing literature related to the assessment of systems thinking in K-12 education, highlighted the lack of comprehensive assessment tools that can apply across many educational disciplines but particularly in areas as it relates to socio-technical problems. Together, these three research areas ultimately seek to inform broader aspects of K-12 education, such as career and technical education, issues related to rural education, and ultimately focusing on students’ ability to handle complex problems in their communities or other contexts with systems thinking. 
    more » « less